
Intelligent Assistant for Context-Aware Policies
Helen Balinsky and Neil C. A. Moore

Hewlett Packard Laboratories,
Bristol, UK

helen.balinsky@hp.com & neil@bigoh.co.uk

Steven J. Simske
Hewlett Packard Laboratories,

Ft. Collins, CO, USA
steven.simske@hp.com

Abstract—Recent advancements in document handling tools
have greatly simplified the tasks of reusing content and copying
between secure and unsecure locations. As a result, intentional
and unintentional data leaks are occurring more often and
so posing a serious risk. To address this issue, context-aware
policies have been introduced so that the policies pertain to
the patterns of text contained in actual run-time content –
as well as static document-level metadata – with the aim of
distinguishing different types of sensitive documents. Unlike
traditional metadata based policies, context-aware policies do not
need to have any overlap in their conditions for contradictions
to occur, which makes it harder to create and manage coherent,
ambiguity free sets of policies. We provide a novel Intelligent
Modeling Assistant (IMA) that automatically deals with resolv-
able complications in modelling, while breaking tasks requiring
manual intervention into a set of simple decisions. The IMA
also helps the administrator to understand possible consequences
of policies through sets of examples. Our implementation using
constraint satisfaction technology is described.

I. INTRODUCTION

The last decade has brought unparalleled advances in docu-
ment creation and management technologies: from collabora-
tive mash-ups to automatic repurposing tools, and from docu-
ment centric workflows to on-line document sharing. Cloud
computing and mobility have merged secure intranet and
insecure internet making it simple to drag-and-drop protected
data into a public document, often even without realizing
it. That is, document level metadata – the cornerstone of
traditional document access control – is insufficient when
copied data is leaked. Such metadata could easily be lost or
fail to properly describe a newly created mash-up.

Context aware policies are a new technique for policy
enforcement. They take into account the actual (run-time)
document contents at the moment a document action is about
to be executed. An example of such a system can be found in
[1]. Policy conditions of context-aware policies may include
document keywords, data patterns, regular expressions or any
combination thereof. When a document being exported is
scanned and the policy condition is satisfied, then the protec-
tive action defined by the policy is triggered thus preventing
an inadvertent sensitive data leak.

It is expected that documents from the same office have a
lot in common, relating to the same subjects and topics. Yet,
only some of them are sensitive and must be distinguished
by policy conditions. In addition, in natural language there
are many ways to express the same things, thus requiring
for a policy to be flexible enough to accommodate potential

variations as well as language inflexions. Hence in order to
be descriptive enough, context aware policy conditions might
need to incorporate alternatives, negations and variants.

In §II and §III of this paper we describe the problem and
give an overview of our solution, and in §IV describe related
work. In the remaining sections we describe our solution in
detail and finish with concluding remarks.

II. PROBLEM STATEMENT

A first problem is how to make decisions when end users
attempt to export data from their systems. A solution must
evaluate the policies quickly and accurately, so that the user is
not held up in their work but sensitive data cannot be leaked.

The next issue is how to create and define a set of policies.
As well as manually creating new policies, the administrator
should be aided in understanding other policies created auto-
matically. Mixing complex hand-made and automatic policies
with elaborate policy conditions while keeping the overall
policy system comprehensive and consistent, presents a sub-
stantial technical and usability challenge for our assistant.

A further complication presents itself in the management of
ambiguities in policies, where multiple policies apply to the
same document. We will help the administrator to specify the
intended behaviour in the event of a ambiguities by presenting
them with a sequence of choices based on example documents.
As we will show in §IV, ours is the first technique that we
know of that helps the adminstrator in this way rather than
simply asking them to manually amend the set of policies to
avoid conflicts.

The latter two difficulties in modelling motivates our work
in this paper on an Intelligent Policy Assistant for creating and
managing next-generation context-aware policies, whilst auto-
matically keeping them free of inconsistencies, redundancies
and contradictions.

III. OUR SOLUTION IN BRIEF

We will show how to solve the following problems in
the context of our Automatic Policy Enforcement eXchange
(APEX) solution [1], [2] for data leak prevention. APEX, a
policy enforcement solution, captures full document content
and document metadata before potentially policy-breaching
action has been fully executed and sensitive data has escaped.
Thus, such action is instantly suspended and the document
data and metadata are analyzed using context-aware policies
to determine whether the required action can continue or, if

not, what the alternative action should be. As with any real
run-time system, the decision should be made quickly: a user is
waiting for the operation to be finished. Our solution provides
a mechanism for making such policy decisions efficiently.
We implement this functionality using constraint programming
and specifically a satisfiability solver.

The second part of our solution is to create an assisted editor
for setting and maintaining security policies. The object of
this is to move beyond simply specifying the policies and
observing their effects on a working system, and instead to
create an editing environment that helps users to understand
and predict the effects of their policies during editing. The aim
is to avoid any unintended side effects of any policy–wasting
the user’s time, allowing unsafe actions, and/or creating a
security hole–while also ensuring that no safe actions are in-
advertently denied. We also aim to avoid policy administrators
being exposed to the modelling formalism directly, but instead
guide them with feedback and assistance based on examples
of documents and actions.

IV. RELATED WORK

We believe that our line of research (previously published
in [1] and [2]) is unique in that the policies are based on
runtime document contents as well as metadata. This makes
our policies different from many types of policies used in
the past because they may pertain to a boundless set of
attributes, e.g. the presence or absence of an arbitrary word in
a document, and not a predefined set of fields as in the past.

We take care in this paper to explain how we deal with con-
flicts, where multiple policies contradict each other on certain
attempted actions. There is much previous work in this area.
Numerous papers have given definitions of types of conflicts,
e.g. [3]–[10]. The type of conflicts we are interested in are
called modality conflicts in [4]. There are several existing tech-
niques for handling conflicts. Explicit prioritisation of policies
is found in [4], [7], [11]–[13]. Our solution to this problem
is by explicit computer-assisted prioritisation. Other ways to
resolve conflict include prioritising restrictive (or permissive)
policies ([11], [13]); domain-specific techniques that prioritise
the most specific policies ([3], [5], [14]); prioritising the most
recent policies [14]; or simply to forbid conflicts ([3], [13])
(usually as a last resort once other techniques fail). Numerous
approaches exist to discover conflicts in sets of policies ([4],
[7], [12], [15]–[19]). Our technique is most similar to [6] in
spirit. This technique processes policies in order to determine
when pairs are such that one makes the other redundant, one a
special case of the other, etc. In [6], the conflicts are reported
to the user, whereas we incorporate this type of reasoning
into an assisted wizard to help the user to obtain their desired
behaviour for the whole set of policies.

Our work also focusses on intelligent interfaces for editing
and understanding sets of policies. Interfaces which assist the
user in finding conflicts have been implemented before and
described in [17], [19]–[21]. These interfaces all assume a high
level of administrator competence; in particular they assume
that the administrator is conversant in the modelling formalism

and that it is enough to list the conflicts for him to figure out
how to change his set of policies to deal with them. In our
approach, we assist the user in making simple choices between
example documents, rather than asking them to directly edit
policies or specify priority between policies.

Our system is implemented using constraint programming
and satisfiability. Constraints have been used before to model
policies in [22] and [23], though the details of our modelling
differs. Logic programming ([18], [24], [25]) and formal
models have also been used in the past for encoding policies
([15], [21], [26], [27]).

V. POLICIES

A. Policy system
In this section we will formally describe the format of

policies and what they mean. Each policy is as follows:

rule ::=proposed action

∧ metadata

∧ policy expr → required protection

where proposed action ::= print|email|upload|save,

metadata :==printer IP |email address

| upload IP |save path,

policy expr ::=policy condition

| (policy expr ∨ policy expr)

| (policy expr ∧ policy expr)

| (¬policy expr)

policy condition ::= text tag|regular expression

required protection ::=allow [allow embellishment]

| deny [deny embellishment]

allow embellishment ::= log|encrypt|sign|redact| . . .

and deny embellishment ::= log|alert|

In valid rules the metadata must match the proposed action,
e.g. for printing the metadata must be a printer IP address, and
the policy conditions should be respectively strings of one or
more characters and valid regular expressions.

A text tag or regular expression evaluates to true when
it is found anywhere in the document. The meaning of
policy exprs correspond to normal meanings in boolean al-
gebra. Policy rules correspond to their boolean algebra equiva-
lent; that is, whenever proposed action and metadata match
the action the user is trying to carry out and policy expr
evaluates to true on the document that the action pertains
to, then the specified required protection is forced on the
action.

Required protections fall into two classes, allow and deny,
but may also have an embellishment, which means that the
protection must be applied along with an additional feature.
For example, allow encrypt means that the action should be
allowed combined with encrypted. We say that two policies
have compatible protections when they are the same apart from
embellishments. We say that two policies have incompatible
protections when they are different apart from embellishments.

NewModel 5N
Press Release

NewModel 5N

POLICY_1: IF (“NewModel 5N“) THEN DENY

POLICY_2: IF (“Press Release”) THEN ALLOW

Press Release

?

Fig. 1. Depiction of policy contradiction

Example 1: Consider the following example policy

save ∧ ¬’C:\encrypted’ ∧ ’classified’→ deny.

This policy will be in effect only for actions that intend to
save a document containing the word “classified”, outside the
’C:\encrypted’ directory path, and it says that action
should be denied. For any other action the policy will be
ignored as it does not apply.

It is a common situation for multiple context-aware policies
to apply at once. Note that in a policy language with fixed
condition attributes, e.g. source and destination IP address
and port for firewall rules, only policies that overlap on their
attributes can possibly apply simultaneously and therefore
possibly contradict each other. On the other hand, our policies
do not need to have any overlap in their conditions for
contradictions to occur.

Example 2: Suppose we want to model policies so that the
user is forbidden to email any file containing the name of
a new product (called NewModel 5N). However documents
containing the words “press release” should be allowed. We
want these policies to avoid leakage of documents related to
the new product, except explicitly vetted press releases. A
candidate set of policies are depicted in Figure 1. When a
document contains both “press release” and “NewModel 5N”
then we have a policy contradiction. Note that the policies do
not overlap in their conditions.

B. Interpretation of policies

§V-A describes the meaning of a single policy, however we
are interested in compiling databases of policies to describe
overall security policy. Hence we need to produce a policy
decision when a set of policies is applied. On an intended
action when only one policy applies, the rest are simply
irrelevant. When two policies suggest the same protection for
a particular action, they can both have their way. However
when two policies suggest incompatible protections applied to
the same document, e.g. allow and deny, we need a way to
decide which policy decides the final outcome. We call the
situation where multiple policies have incompatible outcomes
policy contradiction.

Before talking about contradiction in detail, we will describe
what happens when multiple policies suggest compatible but
different protections, e.g. allow sign and allow encrypt. All
the embellishments that we will consider are what we will
call stackable, meaning that they can all be done at once, i.e.
it is perfectly acceptable to sign, encrypt and log the same

document. Hence when multiple policies apply we just do all
the embellishments in some predefined order.

We will consider 3 strategies for handling contradiction:
Most restrictive action If multiple policies return different

results, use the most restrictive result, e.g. deny when
any rule says deny. Note that least restrictive is also a
valid strategy.

Normalisation Ensure that one and only one policy applies
at any time by constructing the policies carefully.

Prioritisation Order the policies and use the result of the
highest priority one that applies.

Each strategy provides a consistent and precise way of
dealing with policy contradiction. The first choice, most (least)
restrictive action, is inflexible because it has an intrinsic bias
towards restrictiveness (permissiveness). The second choice,
normalisation, is tricky to work with because policy conditions
will have to be more specific, so that only one can ever apply at
once. This is difficult for the average user to achieve, and even
if the system were able to automatically normalise policies, the
user may lose their intuition for their own transformed policies.
As we will show, the remaining third choice, prioritisation,
provides ease of policy modelling and flexibility to create
policies for special cases. Similar strategies are described for
XACML policy-combining algorithms (see [28], page 15).
Using an example, we will now illustrate the strengths and
weaknesses of each interpretation of policy contradiction:

Example 3: Consider the same scenario described in Ex-
ample 2.

Using “most restrictive action” the policies needed are

email∧’NewModel 5N’∧¬’press release’→ deny (1)
email ∧ ’press release’→ allow. (2)

The things to note are that the policy denying leakage of
details of “NewModel 5N” needs to specify explicitly that
press releases are excluded. The policy for “press releases” is
as concise and clear as we could have hoped.

Using “normalisation” the policies needed are

email∧’NewModel 5N’∧¬’press release’→ deny (3)
email∧’NewModel 5N’∧’press release’→ allow. (4)

As can be seen from this example, normalisation results in
very verbose policies, since they need to be specific enough
that only one applies at once. For each additional product name
that is to be protected, we must add two policies.

Finally using “prioritisation” we need policies

email ∧ ’NewModel 5N’→ deny (5)
email ∧ ’press release’→ allow. (6)

such that the latter policy has a higher priority than the former.
These policies are quite clear, although some complexity is
hidden in the ordering of the policies. The intuition behind
the ordering is that the “press release” rule is a special case
that overrides all other policies and is placed top priority.

For each alternative interpretation we will now describe
which policies apply for a couple of example documents.
For a document containing “NewModel 5N” and not “press

p

sr

q

t

ALLOW

ALLOW

DENY

DENY

DENY

(a) Totally ordered

p

sr

q

t

DENYALLOW

ALLOW

DENY

DENY

(b) Partially ordered

Fig. 2. Priority relations drawn as graphs: vertices are policies and edges
go from higher to lower priority policies

release” policies (1), (3) and (5) apply. Hence for each
interpretation a single deny rule applies and the result is clear.
However for a document containing both “NewModel 5N” and
“press release” policies (2), (4), (5) and (6) apply. For “most
restrictive” and “normalisation” only a single allow policy
applies so there is no contradiction. For “prioritisation” both
policies are in effect but the allow policy wins.

C. Avoiding contradiction

From now on we will assume that prioritisation is being
used to avoid conflicts, but we have not yet specified precisely
how the policies should be ordered. Orderings can be drawn
as directed graphs as shown in Figure 2. The vertices in the
graph are policies. If there exists a path from policy x to policy
y then policy x has a higher priority than policy y. A first
property required of the ordering is that for any pair of policies
with incompatible protections, e.g. allow and deny, one of the
policies must have priority over the other, i.e. ∀x, y there is
a path from x to y or a path from y to x, but not both. This
means that whenever a pair of policies might conflict there
is an unambiguous outcome. A concequence of this property
is that the graph should not contain cycles because a cycle
involving policies x and y is such that x is higher than y and
also y is higher than x, meaning neither has priority.

In Figure 2(a) a complete ordering is shown, with edges
between all pairs of policies, including those with the same
protection. This corresponds to arranging policies in a list
sorted from highest to lowest priority. However, it describes
unnecessary ordering between policies; for example, two poli-
cies with protection allow are relatively ordered, but they do
not conflict. Also, there is no need for the edge from p to
t because there is already a path from p to t via r. It is
important to minimise the number of edges because each edge
corresponds to a decision the user has to make about policy
ordering. For this reason we will avoid complete orderings.

In Figure 2(b) an ordering is shown that also satisfies the
necessary properties but using far fewer edges. Now there is
no ordering between some pairs of policies with the same
required protection, e.g. policies q and s. Notice that the graph
is bipartite, meaning that it can be split up into two sets of
vertices such that all edges are between the sets.

Now we have described a suitable way of describing policy
ordering, such that in any situation where multiple policies
apply at once there is a well defined way to decide which
result applies. Furthermore, the ordering is concise since fewer
edges are needed.

In the following section we will describe how we implement
these concepts in software.

VI. CONSTRAINT PROGRAMMING MODELLING OF
POLICIES

In the previous section we described in abstract terms
what policies are and how they are evaluated to make policy
decisions for data leak prevention. In this section we describe
our constraint programming implementation of policies.

The constraint programming paradigm is based on a mod-
elling stage where the problem domain is described in terms of
constraints and variables and a solving stage where solutions
are found. In our case the modelling is done using boolean
satisfiability:

Definition 1 (Boolean satisfiability (SAT)): A SAT prob-
lem consists of

• a set of variables V = {v1, . . . , vj},
• a set of literals L each of which is either a variable v or

its negation ¬v, and
• a set of clauses C = {c1, . . . , ck}, where each clause ci

is a set of literals.

A solution to a SAT problem is a set of literals S such that
l ∈ S ⇔ ¬l /∈ S and also for each clause C the intersection
of C and L must be non-empty, i.e. a literal from the solution
must be found in each clause.

A clause {l1, . . . , lj} behaves like a disjunction l1∨ . . .∨ lj
because the solution must contain at least one literal from each
clause in order that it be satisfied. The whole SAT behaves like
a conjunction c1 ∧ . . . ∧ ck because all clauses must be true
for the SAT to be satisfied. When v ∈ S we say that v is set
to true in the solution and when ¬v ∈ S we say that v is set
to false.

Example 4: Consider the SAT consisting of variables
{x, y, z} and clauses {{x,¬z}, {x, z}, {¬y, z}}. This corre-
sponds to the Boolean expression (x∨¬z)∧(x∨z)∧(¬y∨z).
The set S = {x,¬y, z} is a solution, because each clause has
a literal from S in it. This corresponds to setting x = true,
y = false and z = true.

Hence, the modelling stage in our solution consists of
generating a SAT problem that describes our security policy
and the solving stage involves providing this model to a SAT
solver. The attempted action is allowed under the policy if
and only if the SAT solver can find a solution. When a SAT
solver based on backtracking search terminates, it has either
found a solution or proved that none exists. The best known
lower bound for solving the SAT problem is exponential and
indeed it was the first known NP-complete problem [29]. We
rely on the fact that in practice solutions can be found quickly
due the intelligence and efficiency of modern solvers and later
in the paper we will provide experiments to justify this. Our
implementation uses the SAT4J solver [30]. In the following
section we will describe how we have modelled our security
policies as a SAT.

A. Modelling of policy system
In this section we will describe the variables and clauses

used to model sets of policies.
For the purposes of this model, notwithstanding the discus-

sion in §V-C, we will assign each policy a priority number
where higher numbers mean higher priority. This can be done
by performing a preorder traversal on the priority graph, in
order to create a list of policies from low priority to high and
then numbering them in that order. Let the numbers assigned
range between 1 and maxprio.

The previous section described a SAT problem as being
defined in terms of clauses. To make the presentation simpler,
in this section we will first describe the constraints on our
model using boolean expressions involving conjunction (∧),
disjunction (∨), implication (→) and biconditional (↔). Fol-
lowing these will be an equivalence operator (≡) and then a
concrete way of writing down the expression as a clause.

Each fragment of a policy (i.e. the parts of a policy exclud-
ing boolean operations) is given a boolean variable that is true
if and only if the current document or proposed action matches
it. For example there is a variable for each word appearing in
a policy (e.g. ”confidential”) and a variable for each proposed
action (e.g. ”email”). Even if a fragment appears in multiple
policies it has only one variable. For example the policy

email ∧ addr = *@gmail.com ∧ ’private’→ deny (7)

is associated with the variables vemail, v*@gmail.com and
vprivate.

One aspect of modelling that presents difficulty is how to
handle outcomes allow and deny. A single variable vallow will
not suffice, unless the set of policies happens to be such that
exactly one policy matches each document (i.e. the policies
happen to be normalised), giving a consistent instantiation of
vallow even if it appears in multiple constraints. The enforced
action (i.e. allow or deny) is modelled by means of a variable
vallow@i which is true if the policy with priority i allows the
proposed action and false if it disallows the proposed action.
However if the policy at priority i has no opinion either way,
vallow@i can be set either true or false.

Each policy is converted into one or more clauses, depend-
ing on how complex it is. A simple policy like (7) converts
straightforwardly into

(vemail ∧ v*@gmail.com ∧ vprivate → ¬vallow@2) (8)
≡(¬vemail ∨ ¬v*@gmail.com ∨ ¬vprivate ∨ ¬vallow@2)

assuming that it has priority 2. Hence when the left hand side
of the policy is false, vallow@2 can be either true or false but
if the policy matches, it must be set to false or else the clause
has no literals in the solution.

However even a variable vallow@i for each priority i is not
enough to model the problem, for supposing that vallow@2

is false in a solution: does this mean that policy (7) forces
the action to be denied (excluding a higher priority rule that
overrides it) or does it mean that clause (8) is already satisfied
because the conditions don’t match and vallow@2 has been set
arbitrarily?

To get around this a second type of variable is created,
namely vapplies@i for each priority level i. This variable is true

if and only if the policy with priority i enforces an outcome.
This must be modelled by adding clauses to the effect of

LHS of policy↔ vapplies@i.

Now all that remains to do is to create a final variable vallow
and to create the following clauses:
If no rule applies then vallow should be set to a default result
of true by default (corresponding to allow by default):

i∧
¬vapplies@i → vallow

≡ vapplies@1 ∨ . . . ∨ vapplies@maxprio ∨ vallow (9)

If a policy at priority i applies and no higher priority policy
applies, the final result is decided at i:

∀i, vapplies@i ∧

maxprio∧
j=i+1

¬vapplies@j

→ vallow = vallow@i

which can be modelled clausally for an arbitrary i as

¬vapplies@i

∨ vapplies@i+1 ∨ . . . ∨ vapplies@maxprio

∨ ¬vallow@i ∨ vallow (10)

¬vapplies@i

∨ vapplies@i+1 ∨ . . . ∨ vapplies@maxprio

∨ vallow@i ∨ ¬vallow. (11)

These clauses correspond to the intuition that vallow only has
to be set to true (resp. false) when the policy at i applies
and forces the outcome to allowed (resp. disallowed) and every
policy above i does not apply.

Example 5: We will now write down the SAT modelling of
the following clauses from Example 3 and show their use.

email ∧ ’NewModel 5N’→ deny (priority 1)
email ∧ ’press release’→ allow (priority 2).

The variables needed are vemail, vNewModel_5N,
vpress_release, vallow@1, vallow@2, vapplies@1, vapplies@2 and
vallow. The clauses consist of

¬vemail ∨ ¬vNewModel_5N ∨ ¬vallow@1 (12)
¬vemail ∨ ¬vpress_release ∨ vallow@2 (13)
¬vemail ∨ ¬vNewModel_5N ∨ vapplies@1 (14)
¬vemail ∨ ¬vpress_release ∨ vapplies@2 (15)

vemail ∨ ¬vapplies@1 (16)
vNewModel_5N ∨ ¬vapplies@1 (17)

vemail ∨ ¬vapplies@2 (18)
vpress_release ∨ ¬vapplies@2 (19)

vapplies@1 ∨ vapplies@2 ∨ vallow (20)
¬vapplies@1 ∨ vapplies@2 ∨ ¬vallow@1 ∨ vallow (21)
¬vapplies@1 ∨ vapplies@2 ∨ vallow@1 ∨ ¬vallow (22)

¬vapplies@2 ∨ ¬vallow@2 ∨ vallow (23)
¬vapplies@2 ∨ vallow@2 ∨ ¬vallow (24)

Clauses (12) and (13) model the policies. Clauses (14) to
(19) ensure that variables vapplies@i are set correctly. Clause
(20) ensures that when no policy applies the outcome is allow.
Clauses (21) and (22) ensure that when policy 1 applies and
2 does not then the overall outcome is the required protection

More policies to

Start

Load next highest priority policy

More policies to
process?

NO
YES

More policy
NO

Policy metadata
applies to action

YES

NO

Evaluate next unevaluated
policy condition

conditions to
process?

Return default

NO

YES

policy condition

Can SAT solver
make policy
decision?

action (ALLOW)

NO

EndReturn SAT solver decision

YES

Fig. 3. Flowchart of constraints-based decision procedure

of policy 1. Clauses (23) and (24) ensure that when policy 2
applies then the overall outcome is the required protection of
policy 2.

Suppose that the user attempts to email and their document
contains the word “NewModel 5N” but not “press release”.
We will choose to set variables vemail and vNewModel_5N to
true and vpress_release to false to reflect this information
about the user action. vallow is set to true so that if the action
is allowed a solution will be found, but if it’s not allowed it
is impossible to complete the assignment and the solver will
report that there is no solution. Now we will ask the SAT
solver to find a solution. Because of clauses (12) and (14)
variable vallow@1 must be set to false and vapplies@1 must be
set to true. By clause (19) vapplies@2 must be set to false.
Hence by clause (22) vallow has to be false. However vallow
cannot be both false and true and so no solution is possible,
and the solver must succeed in proving that the action should
be stopped (we do not specify how it achieves this).

B. Policy Decisions on User Actions

Example 5 described how policy decisions can be made
using a constraint model of the policied. In practice, however,
it would be preferable to avoid loading all the policies into the
SAT solver and also preferable to be able to avoid evaluating
all the conditions. This is especially true if the condition is
hard to check, e.g. the presence of a string in a very long
document.

In this section, we will describe how policy decisions are
implemented and demonstrate that our implementation is fast
enough for practical use by testing it on a wide range of
randomly generated sets of policies. Our criterion is that
the delay of checking policy conditions should be barely
perceptible and we set ourselves a target of 0.25 seconds for
making decisions.

Our implementation works as shown in Figure 3. In short,

policies are loaded one by one, and conditions are evaluated
until the SAT solver is able to prove definitively what pro-
tection must be enforced. In this way, only the policies and
conditions that are necessary to get a result are processed.
In the current implementation, policies are preloaded into
memory before the procedure begins, but this may vary on
a different architecture with less memory.

1) Empirical evaluation: We have carried out an empirical
evaluation of the efficiency of our SAT implementation. We
have obtained 20 text documents from gutenberg.org
ranging in size from 1Kb to 5Mb. From these we have
generated random databases of policies. The condition on each
policy is a randomly chosen disjunction of up to a maximum
mp disjuncts. Each condition is picked randomly from either
an English dictionary or the text document from which the
database is derived. The path under which the policy applies is
also chosen at random. The protection is also chosen at random
from a choice of allow or block (without embellishment).
The final parameter to our random generator is the number of
policies in the database. Overall we have 540 such databases
under test.

In order to test the database, we attempt to save the
document the database was generated from to a randomly
chosen location on disk. Then the SAT decision engine is
asked to decide whether this attempt is allowed or not.

Table I summarises our results. We have split the results
up into rows for each database size and maximum condition
length. The “Decision time” columns are summary statistics
for the total time taken to make a decision for a single
document, including the time to load the file from disk. They
demonstrate that we have been successful in keeping decision
time to a level which does not inconvenience users. The
“Proportion of decision time spent searching” columns give
the proportion of the decision time that is spent evaluating
conditions, i.e. searching for relevant words in the document
text. The median is consistently around a third and the
maximum around 4

5 . This suggests that in our implementation,
there is no major overhead either in evaluating conditions or
in running the SAT solver. Finally in the “Number of strings
searched” columns we show that very few strings need to
be searched for in order to make a decision. This is because
we load and evaluate only the minimum number of policies
needed to form a decision. If, for example, every condition
in a 1000 policy database is checked, that is a minimum of
1000 conditions and possibly many more, but we do it in a
maximum of 6 checks for any action.

VII. DESCRIPTION OF INTELLIGENT POLICY ASSISTANT

In this section we will describe our assisted policy mod-
elling environment which we use to help the user to define
policies such that

• redundant policies are avoided (i.e. policies that can be
removed without changing the protection for any action);

• they understand the effect of adding, editing and deleting
a policy; and

TABLE I
TABLE OF STATISTICS ON POLICY DECISIONS

Policy set Decision time Proportion of decision time spent searching Number of strings searched
Size Cond. size Min. Med. Max. Min. Med. Max. Min. Med. Max.
10 5 0.000 0.018 0.178 0.000 0.361 0.729 0 1 5
10 10 0.000 0.020 0.661 0.000 0.399 0.811 0 1 7
10 15 0.000 0.018 0.269 0.000 0.364 0.764 0 1 4

100 5 0.003 0.024 0.507 0.045 0.469 0.834 1 1 6
100 10 0.004 0.022 0.243 0.024 0.436 0.779 1 1 5
100 15 0.003 0.023 0.299 0.060 0.396 0.759 1 1 5

1000 5 0.002 0.025 0.331 0.053 0.362 0.700 1 1 3
1000 10 0.002 0.025 0.254 0.008 0.346 0.812 1 1 6
1000 15 0.003 0.022 0.265 0.020 0.385 0.717 1 1 4

• they are assisted in choosing priority so that they get their
desired behaviour during policy contradictions.

We wish to avoid redundant policies because they slow
down policy decisions (the engine has to maintain policies that
make no difference) and because we would prefer that users
could avoid expending mental effort to understand redundant
policies. Users need to be aided in understanding their policies
because if they make an unintended change to their policies
they may introduce a potential data leak or make certain
permissible business processes impossible to complete.

A. Supported workflows

We support operations to add, edit and remove policies
from the database. For usability reasons, we restrict the user
to one operation at any one time. This is because any two
policies with incompatible protections can interact to create
a contradiction (as shown in Figure 1) and this includes any
policies the user is currently editing. Hence any change they
make in one policy may effect the meaning of the other. To
avoid this unpredictable situation we allow one policy to be
processed at a time, so that there is an unchanging background
set of policies and no chance of unpredictable side-effects.

A key part of the modelling assistant is summarising the
effect of policies both individually and in groups. We will
describe how we achieve this in the next section.

B. Summarising policies

Suppose we have one of the following problems:
• For a particular policy p, we want to know pertinent and

exhaustive examples of actions, metadata and documents
along with the protection p enforces on those documents.
By pertinent we mean using only key words that appear
in the policy and by exhaustive we mean that we want to
know about all classes of documents the policy applies
to but definitely not every document because they are
infinite in number.

• For a pair of policies p and q, we want to know, by
pertinent and exhaustive examples, what happens if p is
higher priority than q and vice versa.

• For a policy p and an edited version p′ of the same policy,
we want to know pertinent and exhaustive examples of
the actions whose protection differs between before and
after p is edited.

Our next example demonstrates ’pertinent’ and ‘exhausive’:

Example 6: Consider the policy

email ∧ (’private’ ∨ ’confidential’)→ allow.

The pertinent words are “private” and “confidential”. Since the
condition is a disjunction, the policy applies if either “private”
or “confidential” or both is in the document, and when it
applies the outcome is allow. This is 3 pertinent classes of
document, and the corresponding examples are:

Document contains Protection
’private’ allow

’confidential’ allow
’private’, ’confidential’ allow

The first line means that any document containing ’private’
is allowed, for example “private parking” and “private prop-
erty”. When a pertinent word is not included in an example,
it implicitly should not be included in the document.

The previous example showed how we summarise the
effects of a single policy. However we also wish to be
able to summarise what happens when two policies apply in
combination, or when a policy is changed. For the former, we
find pertinent examples of documents to which one or both
policies apply, and in case of contradictions the protection
required is decided by the higher priority.

Example 7: Suppose we want to summarise the effect of
the following policies: the priority 1 policy

email ∧ ’NewModel’ ∧ ’5N’→ deny, and

email ∧ (’declassified’ ∨ ’press release’)→ allow

with priority 2. The pertinent words are “NewModel”, “5N”,
“declassified” and “press release”. The relevant examples are

Document contains Protection
’NewModel’, ’5N’ deny

’NewModel’, ’5N’, ’declassified’ allow
’NewModel’, ’5N’, ’press release’ allow

’NewModel’, ’5N’,
’declassified’, ’press release’ allow

’declassified’ allow
’press release’ allow

’declassified’, ’press release’ allow
There is one way for the first policy alone to apply. There

are 3 ways for the second policy alone to apply. There are a
further 3 ways for both to apply at once. Hence 7 examples
are given.

We will now describe how we generate examples. We
described above in §VI that we implement policies using
constraints. To enumerate outcomes for a couple of policies we

simply post them both in the way described in that section, and
then ask the SAT solver the generate all solutions such that a
policy applies, i.e. we add the clause vapplies@1∨vapplies@2. To
generate an example for each solution, we (1) find all variables
representing policy conditions that have been set to true in
the solution, these are the terms the document must contain,
(2) find metadata whose corresponding variables have been set
to true to see, for example, which save path or which email
recipients the example pertains to and (3) check the value of
vallow to find out if that document is allowed (true) or denied
(false) by that pair of policies. This implementation has the
advantage that it is entirely decoupled from the meaning of
policies, provided that the policy has been modelled as SAT
clauses, this enumeration routine simply requests all solutions
and interprets them. In an imperative approach it would require
some care to ensure that all examples were found and that
the semantics of policies were taken into account even in the
presence of complex conditions including arbitrary boolean
operations.

Next we describe how priorities are depicted in the policy
editor interface.

C. Maintaining priorities
In the policy editor interface, we do not directly expose

the priority relations between policies as shown in Figure 2.
Instead we display the policies in a table, ordered from highest
to lowest priority. We believe that this makes it easy for users
to see at a glance what policies are high and low priority. The
ordering in the table is equivalent to a preorder traversal of
the priority graph, meaning that whenever a there is a path
in the graph from policy p to policy q, p must be earlier in
the list than q. However, in the next sections we describe the
policy assistant where we take into account the specifics of
the underlying priority graph, and make automatic ordering
decisions on the user’s behalf wherever possible based on it.

We will now describe with examples how our modelling
assistant helps the user to achieve the add, edit and remove
workflows.

D. Add policy
The add policy function is implemented as a wizard, pre-

senting the user with a series of choices until the system has
determined what the policy is, how it should interact with other
policies and whether the policy database can be simplified
by removing newly redundant policies as a result. However
changes to the database are only committed at the end of the
wizard, so it can be used for exploratory modelling.

The wizard is structured as follows (1) define the new policy,
i.e. the conditions, details of matching actions and the required
protection, (2) notionally add the new policy at top priority,
(3) ask the user to make a series of choices, in order to move
the policy down in priority until it reaches a position that they
are happy with, (4) summarise the effect of the change and
finally (5) commit the change to the policy database.

Steps (1), (2) and (5) seem relatively self-explanatory, but
we will give algorithms and justification about how we achieve
(3) and (4).

In step (3) at each step we have a new policy called p and
a current policy called cp, which is the next policy below p
in the list described in §VII-C. Each step, the wizard analyses
policies p and cp in order to decide what needs to happen:
leave p at bottom priority and stop if p has already

reached the bottom and hence there are no more policies
left to process, i.e. cp is null/undefined

discard p and stop if protections of p and cp are the same,
but cp has a more general condition, i.e. applies to every
action that p applies to. In other words p is redundant.

delete cp and continue if protections of p and cp are the
same, but p has a more general condition. In other words
cp is redundant, and it might as well be replaced by
p. However we continue to make more decisions about
moving p down the priority, because p covers a broader
condition and its additioal interaction with other policies
should be checked by the user.

skip over cp if p and cp have compatible protections or never
apply to the same action. In other words it doesn’t matter
what order they come in so we do not bother asking the
user to decide.

pick either p or cp and continue if the protections of p and
cp are incompatible and the conditions match exactly
the same documents. The user is asked to pick one or
the other, because a contradiction must result when they
apply. This case is almost certainly the result of user error,
so they might also choose to cancel the wizard or go back
and change the policy.

automatically leave p in current position and stop if p
and cp are incompatible but the condition of cp is more
general. This is done because if p is placed below cp
then the result of p will always be ignored so putting it
above is the only sensible option. Putting p below cp is
called shadowing in [6] and should be avoided.

user picks whether p or cp should have higher priority
in all other cases the user is shown the difference
between putting p above cp or cp above p. They have
a free choice to do either depending on which of the
examples the system presents are correct.

The system either makes an automatic choice or examples
are displayed to illustrate the actions available to the user (as
described in §VII-B).

Once the process stops, the user has chosen a position for
their new policy in the ordering. The system need not ask
the user to make decision about the ordering of p against any
policy lower than cp, because the result is implied.

For step (4) in the wizard we aim to present a final summary
to the user, as a last step before they commit their changes.
Recall that in step (3) the policy is placed into the ordering
at some position pos. The summary we present is to give
pertinent and exhaustive examples of what happens when p
and each policy lower than p apply together.

Example 8: Suppose save∧technical∧report→ allow

(1) and save ∧ NewModel ∧ 5N → deny (2) are already
posted into the policy database. These policies together mean
that technical reports are always allowed but that documents

Fig. 4. Assisted policy ordering screen

containing the name of a new product “NewModel 5N” cannot
be saved. Suppose the user wishes to add a special case that
press releases should also be allowed. Hence the new policy
p=save ∧ press ∧ release → allow is added. Policy (1) is
skipped as it has the same protection as the new policy and
their relative is order is unimportant. However the user is
asked to manually order p and policy (2). The screen is shown
in Figure 4. The user picks the example that corresponds
to what they want to happen in practice, i.e. they pick the
example where saving documents containing “NewModel”,
“5P”, “press” and “release” is allowed rather than denied.

E. Remove policy

Now we will describe the remove workflow. When removing
a policy p the remaining policies can be split into three classes:
• Those that have a protection compatible with p’s protec-

tion, these policies are unaffected by p’s removal because
if they both apply the outcome is unchanged.

• Those that are higher priority than it, these policies are
unaffected by the removal of p, because they already
override it.

• The remaining policies, i.e. those with a protection in-
compatible with p and a lower priority. The effect of
such a policy, let us call it q, are potentially changed
on documents that both p and q apply to.

Our aim is to help the user understand what actions have
their security protection changed by removing p. In the wizard
this is achieved by displaying pertinent and exhaustive exam-
ples of actions whose protections differ before and after p is
removed, for each policy in the final group above, i.e. those
whose protections are incompatible with and have a lower
priority than p.

Example 9: In descending order of priority we have policies
save ∧ technical ∧ report → allow, save ∧ press ∧
release → allow and save ∧ NewModel ∧ 5N → deny.
Suppose we wish to delete the first policy. This doesn’t affect
the second policy, because they both have the same protection.
However the third policy loses its effective coverage of docu-
ments containing both “technical report” and “NewModel 5N”,

Fig. 5. Assisted policy deletion screen

meaning that saving such documents goes from being allowed
to being denied. The wizard summary is shown in Figure 5.

F. Edit policy

Editing a policy is more or less decomposed into a deletion
followed by adding a fresh policy. We have made the wizard
comparatively similar to the add policy wizard, so that when
the user becomes comfortable with adding policies they should
be comfortable with editing too. The disadvantage of this is
that the user may have already made decisions about what
should happen in the case of conflicts, and this knowledge is
not carried over to apply to the edited policy.

The steps in the edit policy wizard are (1) edit the policy
particulars (2) summarise the change in the policy, i.e. give
examples of what it did before and what it does after (3) ask
the user to make a series of choices, in order to move the
policy down in priority until it reaches a position that they are
happy with, (4) summarise the effect of the change and finally
(5) commit the change to the policy database.

Apart from step (2), these are the same as for adding a
policy. In step (2) we display a set of pertinent and exhaustive
examples of the policy before the edit, and after the edit. The
user can therefore see the isolated effect of the policy changes,
i.e. neglecting policy contradictions and looking only at how
it applies on its own.

Example 10: Suppose that the user notices that policy
save∧techical∧report→ allow has a spelling mistake
in it, and corrects it. The initial summary displayed is as shown
in Figure 6.

G. Implementing the Intelligent Policy Assistant

In §VII-B we described how a SAT solver is used to
generate policy examples. Now we describe how it is used
to implement some other features of the add, remove and edit
policy wizards. In all these procedures there is frequently a
need to discover when a policy p has a more general, more
specific or equal condtion compared to another policy q.

With a SAT solver it is very easily to implement this
functionality. To show that p is at least as general as q, we will
ask the SAT solver to find a counterexample, i.e. can it find
a document such that q applies but p does not. This involves

Fig. 6. Assisted policy editing screen

posting both p and q as clauses so that variables vp−applies
and vq−applies represent whether p and q apply respectively.
Now set vp−applies to false and vq−applies to true. If the
solver cannot find a solution is has proved that p is at least as
general as q.

To prove that p is at least as specific as q, simply prove
that q is at least as general as p as described above. To prove
that p has the same condition as q, prove that p is at least as
general as q and q is at least as general as p.

VIII. CONCLUSIONS

We have succeeded in breaking new ground on several
fronts. First, we have shown that a constraint programming
implementation of policy decisions has fast performance when
making policy decisions. Second, we have shown that a con-
straints representation allows us to implement a rich modelling
environment for helping the user to create policies. The SAT
solver provides us with facilities to enumerate documents
based on policies and to prove features of policies, both of
which are needed to create a functional modelling environment
for policies. Finally, we have shown that a policy modelling
environment can make it substantially easier for a user to
create and understand security policies, meaning that they are
aware of side effects and interactions between their policies.
They are supported in making ordering decisions on their
policies, with the drudgery removed and guesswork being
replaced by informed decisions.

REFERENCES

[1] H. Balinsky, D. S. Perez, and S. Simske, “System call interception frame-
work for data leak prevention,” in Proceedings of IEEE International
EDOC Conference, 2011, in press.

[2] S. J. Simske and H. Balinsky, “APEX: Automated policy enforcement
eXchange,” in ACM Document Engineering, 2010, pp. 139–142.

[3] E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo, “A logical framework
for reasoning on data access control policies,” Proceedings of the 12th
IEEE Computer Security Foundations Workshop, pp. 175–189.

[4] E. Lupu and M. Sloman, “Conflicts in policy-based distributed systems
management,” IEEE Transactions on Software Engineering, vol. 25,
no. 6, pp. 852–869, 1999.

[5] M. Ryan, “Defaults in Specifications,” in Requirements Engineering,
1993., Proceedings of IEEE International Symposium on. IEEE, pp.
142–149.

[6] E. Al-Shaer and H. Hamed, “Firewall Policy Advisor for anomaly
discovery and rule editing,” IFIP/IEEE Eighth International Symposium
on Integrated Network Management, 2003., pp. 17–30.

[7] S. Benferhat, R. El Baida, and F. Cuppens, “A stratification-based
approach for handling conflicts in access control,” ACM Symposium on
Access Control Models and Technologies, p. 189, 2003.

[8] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security
policies,” IEEE Communications Magazine, vol. 44, no. 3, pp. 134–141,
Mar. 2006.

[9] A. Heydon, M. Maimone, J. Tygar, J. Wing, and A. Zaremski, “Miro:
Visual specification of security,” Software Engineering, IEEE Transac-
tions on, vol. 16, no. 10, pp. 1185–1197, 1990.

[10] S. Jajodia, P. Samarati, V. Subrahmanian, and E. Bertino, “A unified
framework for enforcing multiple access control policies,” in ACM
SIGMOD Record, vol. 26, no. 2. ACM, 1997, pp. 474–485.

[11] G. Russello, C. Dong, and N. Dulay, “Authorisation and Conflict Reso-
lution for Hierarchical Domains,” Eighth IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY’07), pp.
201–210, Jun. 2007.

[12] C.-c. Shu, E. Y. Yang, and A. E. Arenas, “Detecting Conflicts in
ABAC Policies with Rule-Reduction and Binary-Search Techniques,”
2009 IEEE International Symposium on Policies for Distributed Systems
and Networks, pp. 182–185, Jul. 2009.

[13] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible
support for multiple access control policies,” ACM Transactions on
Database Systems, vol. 26, no. 2, pp. 214–260, Jun. 2001.

[14] N. Li and J. Feigenbaum, “IBM Research Report A Logic-based
Knowledge Representation for Authorization with Delegation,” New
York, vol. 21492, no. May, 1999.

[15] H. Kamoda and M. Sloman, “Policy Conflict Analysis Using Free
Variable Tableaux for Access Control in Web Services Environments,”
Policy, 2005.

[16] S. Davy, B. Jennings, and J. Strassner, “Efficient Policy Conflict Anal-
ysis for Autonomic Network Management,” Fifth IEEE Workshop on
Engineering of Autonomic and Autonomous Systems (ease 2008), pp.
16–24, Mar. 2008.

[17] ——, “Application domain independent policy conflict analysis using
information models,” NOMS 2008 - 2008 IEEE Network Operations
and Management Symposium, pp. 17–24, 2008.

[18] J. Chomicki, J. Lobo, and S. Naqvi, “Conflict resolution using logic
programming,” IEEE Transactions on Knowledge and Data Engineering,
vol. 15, no. 1, pp. 245–250, Jan. 2003.

[19] D. Agrawal, J. Giles, and J. Lobo, “Policy Ratification,” Sixth IEEE In-
ternational Workshop on Policies for Distributed Systems and Networks
(POLICY’05), pp. 223–232.

[20] A. Schaad and J. D. Moffett, “The Incorporation of Control Principles
into Access Control Policies,” System, no. 99311141.

[21] J. Hwang, T. Xie, and V. Hu, “ACPT : A Tool for Modeling and
Verifying Access Control Policies,” Policy, pp. 2–5.

[22] S. Bistarelli and S. Foley, “Analysis of integrity policies using soft con-
straints,” Proceedings POLICY 2003. IEEE 4th International Workshop
on Policies for Distributed Systems and Networks, pp. 77–80.

[23] L. Ramshaw, a. Sahai, J. Saxe, and S. Singhal, “Cauldron: A Policy-
Based Design Tool,” Seventh IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’06), pp. 113–122.

[24] J. Chomicki, J. Lobo, and S. Naqvi, “A Logic Programming Approach
to Con ict Resolution in Policy Management,” Syntax.

[25] C. Ribeiro, P. Ferreira, C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes,
“Security Policy Consistency,” Security.

[26] a.K. Bandara, E. Lupu, and a. Russo, “Using event calculus to formalise
policy specification and analysis,” Proceedings POLICY 2003. IEEE
4th International Workshop on Policies for Distributed Systems and
Networks, pp. 26–39.

[27] A. Jeffrey and T. Samak, “Model Checking Firewall Policy Configura-
tions,” 2009 IEEE International Symposium on Policies for Distributed
Systems and Networks, no. 1, pp. 60–67, Jul. 2009.

[28] “eXtensible Access Control Markup Language (XACML) Version 3.0,”
OASIS Access Control TC, Tech. Rep., 2010. [Online]. Available:
http://tinyurl.com/5vxksvk

[29] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing,
ser. STOC ’71, 1971, pp. 151–158.

[30] D. Le Berre and A. Parrain, “The SAT4J library, release 2.2,” JSAT,
vol. 7, pp. 59–64, 2010.

