
Species Trees and the Ultrametric Constraint

Neil Moore

July 27, 2007

This describes work carried out for my 4th and final year project during
my BSc(Hons) degree in Computing Science at the University of Glasgow.

Overview The theory of evolution suggests that all species, living and
dead, are related. Biologists typically depict this in tree diagrams. Liv-
ing species number in the millions and current approaches to combining
them into one monolithic tree of life are defeated by size. However, bioin-
formaticians have recently been combining manageable fragments to obtain
increasingly complete approximations to the tree of life. This has a sub-
jective element and current algorithms do not capture all of biologist’s re-
quirements in one place. In this project I apply constraint programming
techniques to obtain a solution to the supertree problem that is sufficiently
fast and flexibile.

Evolution and the tree of life Darwin’s theory of evolution by natural
selection is an explanation of how complex species could arise from simpler
antecedents. The basic theory is that within species individuals have differ-
ent characteristics (or adaptations) due to genetic mutation. Those adapta-
tions that help their possessors to survive and reproduce will be present in
a higher proportion in the next generation compared to unhelpful adapta-
tions. This is by virtue of the fact that children inherit their parents’ genes
and hence their adaptations. Speciation occurs as a result of limited mating
whereby adaptations are no longer spread approximately uniformly through
the gene pool and hence certain subgroups of the species can develop certain
adaptations in greater proportion, perhaps as a result of the formation of
mountain barriers or new islands.

Such speciation can be drawn as a rooted bifurcating tree (a species tree

in the biological parlance), where internal nodes represent ancestral species
and leaves represent new species1. See Figure 1 for an example of this sort
of tree.

1This representation is a subject of controversy amongst biologists, as there is evidence
to believe that genetic material has jumped from subtree to subtree (lateral gene transfer),
leaving a DAG rather than a tree, however the tree paradigm is well established and I will
not discuss the controversy any further.

1



Figure 1: Charles Darwin’s first sketch of an evolutionary tree from his First

Notebook on Transmutation of Species (1837)

2



Figure 2: Species tree involving 3000 species and derived from DNA data
by David M. Hillis, Derrick Zwickl, and Robin Gutell, University of Texas

The tree of life[Pen03] is the tree that contains all species. The derivation
of such a tree could involve data from DNA analyses, morphology, physi-
ology, etc. However the task of deriving the tree of life is computationally
and organisationally too hard to be done by a single method[Pag04]. David
Hillis has succeeded in creating a tree from the DNA of 3000 species, as
shown in Figure 2, but this deals with only a small fraction of the millions
of existing species and the prospects of a complete solution seems unlikely
on account of the fact that the problem is NP-complete[Gus97].

For this reason we need a hybrid approach of combining fragments of
the tree efficiently and in a biologically meaningful way. One such method
is using supertrees.

3



a b

c

b

c e

c d e

a b

c d e

Figure 3: Instance (left) and solution (right) to supertree problem

The supertree problem A supertree[Pag04] for a set of input trees is a
tree that contains all the species of the input and also preserves all ancestral
relationships, e.g., the fact that mice and rats are more closely related to
each other than either is to pigs, daffodils or e-coli bacteria. An example
instance and solution to the supertree problem is shown in Figure 3. On the
left a collection of input trees are drawn and on the right is a solution. All
input species are present in the solution, and, in the case of the 3rd input,
species d and e remain more closely related to each other than to c.

The first solution to this problem was published in [ASSU81] in 1981
in the context of database technologies. Since then related algorithms have
been published in the bioinformatics literature to solve the same[NW96] and
related problems[SS00, SDH+04, Dan03]. These algorithms run in polyno-
mial time and have been successfully applied in practical situations to derive
supertrees (e.g., [KP02]).

4



Constraint solution to the supertree problem A drawback of these
algorithms is that, despite their computational efficiency, they are purpose
built to solve one particular problem. The task of deriving them and proving
them correct is difficult and only a small number of people are able to do
it (some of their names appear multiple times in my bibliography!). Con-
straint programming is an alternative strategy for solving the problem that
was first tried in [GPSW03]. In constraint programming, problems are de-
scribed in a relatively high-level, declarative way (a constraint program) and
from this description a generic solver finds solutions to particular instances.
This is done by choosing a set of variables and a set of constraints that
constrain the values that the variables can simultaneously take. Provided
that the constraints describe all the essential properties of a solution, every
solution the solver finds will also be a solution to the problem. Constraint
programming technologies offer a number of advantages in this application:

• Related problems can be modelled by the addition of side constraints
where new imperative solutions would require a complete rethink. In
addition, either one or all solutions can be generated from the same
model.

• It is easier to verify the correctness of constraint programs due to their
declarative nature and intrinsic readability.

• Models benefit from advances in CP technology. For example, ex-

planations[JB00] allow users to discover the reason why no solution
exists, as opposed to the imperative solution which merely informs
them that this is the case! This flexibility is due to the decoupling of
the electronic specification of the problem and the means of solving.

However, CP’s flexibility comes at a cost in efficiency and this is the
backdrop to my main contribution, which was to reduce the time and space
complexity of the CP model of [GPSW03] so that the constraint model now
runs in polynomial time and an asymptotic improvement in memory usage
has been achieved. The algorithm of [ASSU81] finds a solution in O(n2),
but the CP model of [GPSW03] had a worst case complexity of O(nn2

) and
at times it exhibited this exponential worse case behaviour. The memory
requirements of the model was O(n3) and this prevented larger instances
from being loaded into the memory of a desktop computer. As it turned
out, the solution to both of these problems was to create a new design of
propagator for one of the constraints that was involved in the model.

Advances in constraint solution Most modern solvers for constraint
programs use two techniques: search and propagation. During search the
solver works its way systematically through every possible assignment of a
values to each variable, in this way it ensures that no solutions are missed

5



zyx

x y z

Figure 4: Two examples of maximum ultrametric propagation

or repeated. During search, whenever a variable is assigned a value in a
potential solution, the solver will also do propagation. What happens is
that values that are incompatible with a part of the current partial solution
are removed from further consideration. This avoids a solver trying out
values that must inevitably lead to a non-solution and thus wasting its time
on dead ends.

A particular constraint, called the ultrametric constraint, is used ex-
tensively in the constraint model for the supertree problem. For a choice
of 3 variables, it constrains two of them to be the same and the other to
be at least as large. For example, x = 1, y = 2 and z = 1 is a solution
but x = 1, y = 2, z = 3 is not. This constraint is used in the model
so that for each choice of 3 species i, j and k their pairwise most recent
common ancestor’s tree depth is conformant to one possible evolutionary
relationship. Letting Mij be the depth of the m.r.c.a. of species i and j,
it must be the case that one pair of species, say i and j, are most recently
diverged, i.e., Mij > Mik = Mik or that all 3 diverged at the same time, i.e.,
Mij = Mik = Mik.

A propagator for the ultrametric constraint must take as input the cur-
rent domains of the three variables it is posted over, and return the same
three domains but with all impossible values trimmed out. Figure 4 shows
two examples of the maximum possible propagation that can be done to 3
variables x, y and z constrained to be ultrametric. In the first, the shaded
part of z beneath the other two cannot be part of a solution, because there
are no matching values in either of the other domains. In the second, the
shaded part of x cannot be tied for least, because no equal value exists, and
it cannot be the largest because no lesser values in the other domains tie.

I implemented my design of propagator in Java and then proceeded to
prove it correct using a series of rigorous mathematical proofs. One part of
this proof turned out to be especially interesting in the context of the overall

6



problem. This was the theorem that I discovered that after the propagator
has completed, it is guaranteed that the least remaining value for each of
the variables together form a correct instantiation. This property is prob-
lem specific and is not be true of all constraints. The practical repercussion
of this is that the search stage of constraint solving is now redundant and
the entire problem can be solved by first propagating and then taking the
lower bound of each variable as the solution. Since propagation is a polyno-
mial time problem, the CP supertree problem has been pushed down from
exponential time to tractable polynomial time, O(n4) to be precise. In his
review article on supertrees[Pag04], Page says that there is only one poly-
nomial time solution to the supertree problem; this is no longer correct.
Furthermore this breakthrough removes a very valid criticism of the old
model that it may be too slow to use.

The other aim of this work was to reduce the memory requirements of
the constraint solution. The crux of the problem is that the ultrametric
constraint must be posted C(n, 3) = O(n3) times, for an instance involving
n species. In most constraint solvers this amounts to O(n3) space which
dominates the space requirements of all the other constraints and variables.
By replacing the O(n3) extensional representation of the set of ultrametric
constraints by a O(1) code representation I was able to reduce the overall
space usage to O(n2). In practical instances this amounts to a 290 times
space reduction, more for larger instances. Now all foreseeable instances can
be loaded into the memory of a desktop computer.

Since this work was completed, I have been tackling a series of variants on
the supertree problem which have become accessible now that a polynomial
time solution to the original problem has been achieved. This proves that
the model is sufficiently versatile that it can be adapted to solve similar
challenges without starting from scratch. Furthermore, I believe that we
have now progressed to the stage where constraint programming should be
considered seriously for any problem in supertrees. I was able to retain the
strengths of a CP solution (as described above), but also dispense with the
weaknesses in large part.

References

[ASSU81] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring
a tree from lowest common ancestors with an application to
the optimization of relational expressions. SIAM J. Comput,
10(3):405–421, August 1981.

[Dan03] Philip Daniel. Supertree methods: Some new approaches. Mas-
ter’s thesis, Department of Mathematics and Statistics, Univer-
sity of Canterbury, 2003.

7



[GPSW03] Ian P. Gent, Patrick Prosser, Barbara M. Smith, and Wu Wei.
Supertree Construction with Constraint Programming, pages
837–841. Principle and Practice of Constraint Programming.
Springer, 2003.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees and Sequences:

Computer Science and Computational Biology. Cambridge Uni-
versity Press, 1997.

[JB00] Narendra Jussien and Vincent Barichard. The PaLM system:
explanation-based constraint programming. In Proceedings of

TRICS: Techniques foR Implementing Constraint programming

Systems, a post-conference workshop of CP 2000, pages 118–133,
Singapore, September 2000.

[KP02] M. Kennedy and R.D.M. Page. Seabird supertrees: Combining
partial estimates of procellariiform phylogeny. The Auk, 69:88–
108, 2002.

[NW96] Meei Pyng Ng and Nicholas C. Wormald. Reconstruction of
rooted trees from subtrees. Discrete Appl. Math., 69(1-2):19–31,
1996.

[Pag04] Roderic D.M. Page. Taxonomy, supertrees, and the tree of life.
In Olaf Bininda-Emonds, editor, Phylogenetic Supertrees: Com-

bining information to reveal the tree of life, pages 247–265. Com-
putational Biology Series Kluwer, 2004.

[Pen03] Elizabeth Pennisi. Modernizing the tree of life. Science,
300:1692–1697, June 2003.

[SDH+04] Charles Semple, Philip Daniel, Wim Hordijk, Roderic D.M.
Page, and Mike Steel. Supertree algorithms for ancestral diver-
gence dates and nested taxa. Bioinformatics, 20(15):2355–2360,
2004.

[SS00] Charles Semple and Mike Steel. A supertree method for rooted
trees. Discrete Appl. Math., 105(1-3):147–158, 2000.

8


