Distributed solving through model splitting

Lars Kotthoff and Neil Moore
{larsko,ncam}@cs.st-andrews.ac.uk

University of St Andrews

Abstract. Constraint problems can be trivially solved in parallel by
exploring different branches of the search tree concurrently. Previous
approaches have focused on implementing this functionality in the solver,
more or less transparently to the user. We propose a new approach,
which modifies the constraint model of the problem. An existing model
is split into new models with added constraints that partition the search
space. Optionally, additional constraints are imposed that rule out the
search already done. The advantages of our approach are that it can be
implemented easily, computations can be stopped and restarted, moved
to different machines and indeed solved on machines which are not able
to communicate with each other at all.

1 Introduction

Constraint problems are typically solved by searching through the possible as-
signments of values to variables. After each such assignment, propagation can
rule out possible future assignments based on past assignments and the con-
straints. This process builds a search tree that explores the space of possible
(partial) solutions to the constraint problem.

There are two different ways to build up these search trees — n-way branching
and 2-way branching. This refers to the number of new branches which are
explored after each node. In n-way branching, all the n possible assignments to
the next variable are branched on. In 2-way branching, there are two branches.
The left branch is of the form = = y where x is a variable and y is a value from
its domain. The right branch is of the form x # y.

The more commonly used way is 2-way branching, implemented for example
in the Minion constraint solver [5]!. However, regardless of the way the branch-
ing is done, exploring the branches can be done concurrently. No information
between the branches needs to be exchanged in order to find a solution to the
problem.

We exploit this fact by, given the model of a constraint problem, generating
new models which partition the remaining search space. These models can then
be solved independently. We furthermore represent the state of the search by
adding additional constraints such that the splitting of the model can occur at
any point during search. The new models can be resumed, taking advantage of
both the splitting of the search space and the search already performed.

! http://minion.sf.net



2 Background

The parallelisation of depth-first search has been the subject of much research
in the past. The first papers on the subject study the distribution over various
specific hardware architectures and investigate how to achieve good load bal-
ancing [13,7]. Distributed solving of constraint problems specifically was first
explored only a few years later [2].

Backtracking search in a distributed setting has also been investigated by
several authors [12,15]. A special variant for distributed scenarios, asynchronous
backtracking, was proposed in [17]. Yokoo et al formalise the distributed con-
straint satisfaction problem and present algorithms for solving it [18].

Schulte presents the architecture of a system that uses networked comput-
ers [16]. The focus of his approach is to provide a high-level and reusable design
for parallel search and achieve a good speedup compared to sequential solving
rather than good resource utilisation. More recent papers have explored how to
transparently parallelise search without having to modify existing code [10].

Most of the existing work is concerned with the problem of effectively dis-
tributing the workload such that every compute node is kept busy. The most
prevalent technique used to achieve this is work stealing. The compute nodes
communicate with each other and nodes which are idle request a part of the
work that a busy node is doing. Blumofe and Leiserson propose and discuss a
work stealing scheduler for multithreaded computations in [1]. Rolf and Kuchcin-
ski investigate different algorithms for load balancing and work stealing in the
specific context of distributed constraint solving [14].

Several frameworks for distributed constraint solving have been proposed
and implemented, e.g. FRODO [11], DisChoco [3] and Disolver [6]. All of these
approaches have in common that the systems to solve constraint problems are
modified or augmented to support distribution of parts of the problem across
and communication between multiple compute nodes. The constraint model of
the problem remains unchanged however; no special constructs have to be used
to take advantage of distributed solving. All parallelisation is handled in the
respective solver. This does not preclude the use of an entirely different model of
the problem to be solved for the distributed case in order to improve efficiency,
but in general these solvers are able to solve the same model both with a single
executor and distributed across several executors.

The decomposition of constraint problems into subproblems which can be
solved independently has been proposed in [9], albeit in a different context. In
this work, we explore the use of this technique for parallelisation. A similar
approach was taken in [14], but requires parallelisation support in the solver.

3 Model splitting

We now describe our new approach to the distributed solving of constraint prob-
lems which modifies the constraint solver to modify the constraint model and
does not require explicit parallelisation support in the solver.



Before splitting, the solver is stopped. As well as stopping, it is designed to
output restart nogoods for the problem in the solver’s own input language [8].
These constraints, when added to the problem, will prevent the search space just
explored from being repeated in any split model?.

To split the search space for an existing model, partition the domain for the
variable currently under consideration into n pieces of roughly equal size. Then
create n new models and to each in turn add constraints ruling out n—1 partitions
of that domain. Each one of these models restricts the possible assignments to
the current variable to one nth of its domain.

As an example, consider the case n = 2. If the variable under consideration is
x and its domain is {1,2, 3,4}, we generate 2 new models. One of them has the
constraint z < 2 added and the other one x > 3. Thus, solving the first model
will try the values 1 and 2 for x, whereas the second model will try 3 and 4.

The main problem when splitting constraint problems into parts that can be
solved in parallel is that the size of the search space for each of the splits is im-
possible to predict reliably. This directly affects the effectiveness of the splitting
however — if the search space is distributed unevenly, some of the workers will
be idle while the others do most of the work.

We address this problem by providing the ability to split a constraint model
after search has started. The approach is very similar to the one explained above.
The only difference is that in addition to the constraints that partition the search
space, we also add constraints that rule out the search space that has been
explored already.

Assume for example that we are doing 2-way branching, the variable currently
under consideration is again « with domain {1, 2, 3,4} and the branches that we
have taken to get to the point where we are are x # 1 and x # 2. The generated
new models will all have the constraints = # 1 and = # 2 to get to the point in
the search tree where we split the problem. Then we add constraints to partition
the search space based on the remaining values in the domain of x similar to the
previous example.

Using this technique, we can create new chunks of work whenever a worker
becomes idle by simply asking one of the busy workers to stop and generate
split models. The search is then resumed from where it was stopped and the
remaining search space is explored in parallel by the two workers. Note that
there is a runtime overhead involved with stopping and resuming search because
the constraints which enable resumption must be propagated and the solver
needs to explore a small number of search nodes to get to the point where it
was stopped before. There is also a memory overhead because the additional
constraints need to be stored.

We have implemented this approach in a development version of Minion,
which we are planning to release to the public after further testing and verifi-

2 This same technique allows Minion to be paused and resumed: the nogoods are
provided when the solver is interrupted, and can be used to restart search, potentially
using a different solver, different search strategy or on a different machine.



cation. Initial experiments showed that the overhead of stopping, splitting and
resuming is minimal and not significant for large problems.

In practice, we run Minion for a specified amount of time, then stop, split
and resume instead of splitting at the beginning and when workers become idle.
The algorithm is detailed in Figure 1. This creates an n-ary split tree of models
for n new models generated at each split. Initially, the potential for distribution
is small but grows exponentially as more and more search is performed.

Input : constraint problem X, allotted time 7;,,, and splitting factor n > 2
Output: a solution to X or nothing if no solution has been found

run Minion with input X until termination or T},,44;

if solved?(X) then
terminate workers;
return solution;

else if search space exhausted? then

‘ return;

else
X'’ < X with new constraints ruling out search already performed;
split X’ into n parts X{,...,X);

for i < 1 to n do in parallel
| distSolve(X),, Tae.n);
end

end

Fig. 1. distSolve(X,Tnaz,n): Recursive procedure to find the first solution to a
constraint problem distributed across several workers.

4 Comparison to existing approaches

We see the main advantage of our approach in not requiring any involved changes
to the constraint solving system to support distributed solving; in particular
communications between workers. Conventionally, distribution is achieved with
the aid of recomputation and cloning; established techniques used e.g. in [16].
We require two features of our solver: partitioning using constraints, and abil-
ity to output restart nogoods. Our system makes use of cloning, which we call
“splitting” and implement by means of nogoods added to the constraint model
in order to partition the domain of a variable. However, where other systems use
recompution, our system uses restart nogoods. In a system based on recompu-
tation the clone begins at specific search path, e.g. stolen from another worker;
with restart nogoods notionally multiple search paths are provided and the solver
may explore these in any way it wishes, not necessarily one after the other. It is



merely a convenient and compact way of encoding the situation where a solver
is relinquishing all its remaining work.

Contemporary constraint solvers make it easy to change or amend the search
procedure to support distribution across several executors, but even then changes
to the constraint solving system are required. While an initial implementation
of distributed search can be done relatively quickly, handling failure properly
and supporting things like nodes being added and removed dynamically requires
significantly more effort. Our approach separates this part completely from the
constraint solving system.

There are several advantages to implementing distributed solving the way
given in Figure 1. First, by creating regular “snapshots” of the search done, the
resilience against failure increases. Every time we stop, split and resume, the
modified models are saved. As they contain constraints that rule out the search
already done, we only lose the work done after that point if a worker fails. This
means that the maximum amount of work we lose in case of a total failure of all
workers is the allotted time T},4, times the number of workers |w|.

The fact that the modified models can be stored can also be exploited to
move the solving process to a different set of workers after it has been started
without losing any work. It furthermore means that we require no communication
between the individual workers solving the problem; they only need to be able
to receive the problem to solve and send the solution or split models back.

Another advantage is that small problems which Minion can solve within
the allotted time are not split and no distribution overhead is incurred. Solving
proceeds as it would in a standard, non-distributed fashion.

Our approach is particularly suitable for use with existing grid-computing
software or workload management systems such as Condor®. Every time new
models are generated, they are submitted to the system which queues them
and allocates a worker as soon as one becomes available. By leveraging existing
software to perform this task, a huge amount of development time is saved and
errors are avoided. For large problems, the number of queued jobs will usually
exceed the number of workers, ensuring good resource utilisation.

The management system to monitor the search, queue split models and ter-
minate the workers if a solution has been found can be implemented efficiently in
just a few lines of code. We have written a Ruby script that performs this task in
little more than an hour. Obviously there is potential for trying different search
strategies for different branches or modifying other search parameters in order to
improve efficiency. With the appropriate modifications, the management system
could adapt the search procedure specifically for individual parts of the search
tree. We are planning to explore these possibilities in future work.

A downside of the approach is that the number of models which can be
solved in parallel will be small to start with. This means that the utilisation of
resources in the beginning will be suboptimal. Only as more and more search
space is explored and more and more split models are generated, the utilisation
will improve. This however can be mitigated by dynamically adapting the time

3 http://www.cs.wisc.edu/condor/



for which Minion is run before splitting the problem — in the beginning, we set it
to a small value to quickly get many models that we can solve in parallel. Then
we gradually increase the allotted time as the resource utilisation improves.

Our technique is intended to be used for very large problems which take a
long time (many hours, days or weeks) to solve. It is unlikely to be efficient
for problems that can be solved in minutes, but on the other hand there is no
need for distributed solving if the problem can be solved sequentially in a short
amount of time. Only large search spaces can be split in a way that many workers
are kept busy without a high communication overhead.

5 Detailed example

We will now have a detailed look at how our approach works for a specific
problem. Consider the 4-queens problem. We want to place 4 queens on a 4 x 4
chessboard such that no queen is attacking another queen. Queens can move
along rows, columns and diagonals. The constraints therefore have to forbid
that two or more queens are in the same row, the same column or on the same
diagonal. The constraint model in Figure 2 captures this problem.

language Dominion 0.1

letting n = 4

dim queens[n]: int

find queens[..]: int {1..n}

such that

alldifferent alldiff(queens[..])

diagonalsl [ not(eql eq(queens[i], add(queens[jl, j-i))) |
i in {0..n-2}, j in {i+1..n-13} ]

diagonals2 [ not(eq2 eq(queens([i], add(queens[jl, i-j))) |
i in {0..n-2}, j in {i+1..n-1} ]

Fig. 2. Model for the 4-queens problem in the Dominion language [4]. The model
describes the n-queens problem in general and is specialised for 4-queens in the
second line.

We assume variable ordering queensg, queensy, queenss, queenss, ascending
value ordering from 1 to 4 and n-way branching. The search tree for a simple
backtracking algorithm is depicted in Figure 3. Even for a very small problem
like this, there is significant potential for distributed solving.

We now start solving the problem until we reach the assignment queensy = 2.
Then we stop. The constraint we need to add to resume the search at the same
point is

resume not(innerresume eq(queens[0], 1))



D o

/

o080 @ ofolelo
o ee“‘o

v DOAD D@ ull (b

Fig. 3. First solution search tree for 4-queens. The triangles depict subtrees
which are not explored because the partial assignment so far cannot be part of
a solution. The bold, rightmost node is where the solution is found. The levels
of the tree show assignments to the variables shown on the left.

queensy

(note that resume and innerresume are simply identifiers given to the specific
constraints as required in the Dominion language [4]).

Let us assume a splitting factor of 2. We add the constraints to split the
remaining search space as follows. The variable currently under consideration is
queensy, its domain is {1,2,3,4} and therefore the constraints are

left leq(queens[1], 2) and right leq(3, queens[1]).

The search is restarted with two workers, each exploring separate branches
of the remaining search space. The first worker finds no solutions in its part of
the search space, terminates and returns. The second worker finds a solution and
returns it. Search terminates and no further splitting is performed.

6 Conclusions and future work

We have proposed and detailed a novel approach for distributing constraint
problems across multiple computers. Instead of modifying the solver to support
distributed operation, we only require some simple and generic modifications
that post additional constraints to the model.

The main advantages of our approach are that it does not require networked
machines, is resilient against failure and can be implemented easily in constraint
solvers which are aware of the state of the search.

The main drawback of this paper is that we do not have performed a sys-
tematic experimental evaluation of our approach yet. In the future, we would
like to evaluate it in terms of solving speedup and resource utilisation on large,
real-world problems. Furthermore, we would like to investigate finding all solu-
tions to a constraint problem and solving constrained optimisation problems in
a distributed manner.



Adapting the search procedure and parameters dynamically during search is
another promising area for future work. The solving process could be tailored to
the characteristics of parts of the search space to improve efficiency.

Another direction for future work is to support a higher level of abstraction
for decomposing problems into subproblems. This would be necessary to support
problems which cannot be decomposed by simply adding constraints that split
the domain of a variable.

Acknowledgements

The authors thank Chris Jefferson for help with implementing the model split-
ting in Minion and the anonymous reviewers for their feedback. Lars Kotthoff
is supported by a SICSA studentship.

References

1. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720-748 (1999)

2. Collin, Z., Dechter, R., Katz, S.: On the feasibility of distributed constraint satis-
faction. In: IJCAI pp. 318-324 (1991)

3. Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, H., Mohammed, U., Agdal,
V.: DisChoco: A platform for distributed constraint programming (2007)

4. Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Nightingale, P.: The DOMINION
input language version 0.1. CIRCA preprint 2009/21, University of St Andrews
(2009), http://www-circa.mcs.st-and.ac.uk/Preprints/InLangSpec.pdf

5. Gent, I.P., Jefferson, C., Miguel, I.. MINION: a fast, scalable, constraint solver. In:
ECAL pp. 98-102 (2006)

6. Hamadi, Y.: Disolver 3.0: the Distributed Constraint Solver version 3.0 (2007)

7. Kumar, V., Rao, V.N.: Parallel depth first search. Part II. analysis. Int. J. Parallel
Program. 16(6), 501-519 (1987)

8. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In:
IJCAT07: Proceedings of the 20th international joint conference on Artifical intel-
ligence. pp. 131-136. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2007)

9. Michel, L., Hentenryck, P.V.: A decomposition-based implementation of search
strategies. ACM Trans. Comput. Logic 5(2), 351-383 (2004)

10. Michel, L., See, A., Hentenryck, P.V.: Parallelizing constraint programs transpar-
ently. In: CP. pp. 514-528 (2007)

11. Petcu, A.: FRODO: a FRamework for Open/Distributed constraint optimization.
Technical report no. 2006/001, Swiss Federal Institute of Technology (EPFL)
(2006), http://liawww.epfl.ch/frodo/

12. Rao, V.N., Kumar, V.: On the efficiency of parallel backtracking. IEEE Trans.
Parallel Distrib. Syst. 4(4), 427-437 (1993)

13. Rao, V.N., Kumar, V.: Parallel depth first search. Part I. implementation. Int. J.
Parallel Program. 16(6), 479-499 (1987)

14. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed
constraint solving. In: CLUSTER. pp. 304-309 (2008)



15.

16.

17.

18.

Sanders, P.: Better algorithms for parallel backtracking. In: Workshop on Algo-
rithms for Irregularly Structured Problems. pp. 333-347 (1995)

Schulte, C.: Parallel search made simple. In: Proceedings of TRICS. pp. 41-57
(2000)

Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: 12th IEEE International
Conference on Distributed Computing Systems. pp. 614-621 (1992)

Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Trans. on Knowl. and
Data Eng. 10(5), 673-685 (1998)



