
A Preliminary Review of Literature on Parallel
Constraint Solving

Ian P. Gent, Chris Jefferson, Ian Miguel, Neil C.A. Moore, Peter Nightingale,
Patrick Prosser, Chris Unsworth

Computing Science,
Glasgow and St. Andrews Universities, Scotland

pat@dcs.gla.ac.uk

Abstract. With the ubiquity of multicore computing, and the likely ex-
pansion of it, it seems irresponsible for constraints researchers to ignore
the implications of it. Therefore, the authors have recently begun inves-
tigating the literature in constraints on exploitation of parallel systems
for constraint solving. We have been compiling an incomplete, biased,
and ill-written review of this literature. While accepting these faults,
we nevertheless hope that it may provide some useful pointers to others
wishing to follow a similar path to us: that is a path from complete to
only partial ignorance.

1 Introduction

Why have multicore machines arrived, and how are we to make best use of them?
We start our review by looking at the justification for the multicore architecture,
the direction it is most likely to take and limiting factors on performance such as
Amdahl’s law. We then review recent literature on parallel constraint program-
ming and SAT solving. We group this into four areas: parallelizing the search
process; parallel and distributed arc-consistency; multi-agent and cooperative
search; and combined parallel search and parallel consistency.

2 The Hardware: multicore, GPU and Amdahl’s law

Written in 2006, Intel’s White Paper [14] starts by saying “... two cores are here
now, and quad cores are right around the corner”. Now, 12 and 16 core machines
are commonly available. But why go multi-core? In the past performance im-
provements could be taken for granted as clock speeds increased (from 5 MHz to
more than 3 GHz), component size decreased, and chip density increased. Three
reasons are given for the shift to multi-core. First, although component size
continues to fall, power-thermal issues limit performance, so we can no longer
simply increase clock speeds. Secondly, power consumption: individual cores can
be tuned for different usages (i.e. dedicate hardware resources to specific func-
tions), and when not in use cores can be powered down. And thirdly, rapid design
cycles: hardware designs can be reused across generations.



2 Gent, Jefferson, Miguel, Moore, Nightingale, Prosser, Unsworth

What are the major challenges? Intel put top of their list “programmability”,
that the platform must address new and existing programming models. And
then “adaptability”, such that the platform can be dynamically reconfigured
to conserve power. Of course “reliability”, “trust”, and “scalability” are also
important, as we increase cores we cannot compromise the correctness of the
hardware.

Intel considers development of multi-core software to be amongst the great-
est challenges for tera-scale computing, specifically with regard to ensuring that
“there are compelling applications and workloads that exploit the massive com-
pute density” and that “multiprocessing adds a time dimension that is extremely
difficult for software developers to cope with”. They give a further justification
for the multi-core architecture: “... why tomorrow’s applications need so many
threads. The answer is that those advanced, intelligent applications require su-
percomputing capabilities, and the accompanying parallelism that allows those
applications to proceed in real-time. ... it requires an equally massive shift in
hardware and software.”

Intel’s tera-scale computing vision is to aim for hundreds of cores on a chip,
giving the capability of performing trillions of calculations per second on trillions
of bytes of data with a stated goal (2006) “... a 10X improvement in performance
per watt over the next 10 years.”. How close are we to that goal? In 2006 two
core machines existed, at time of writing in Summer 2011, 24 core machines are
commercially available, and Intel’s Teraflop Research Chip (Polaris) contains 80
cores.

But there is a shadow cast over this optimism, Amdahl’s law. Amdahl’s
law predicts the maximum speedup that can be expected from a system as we
increase the number of processors. The law assumes that a program is composed
of a parallel part P and a sequential part S, such that P +S = 1. The expected
speed up is then 1/(S+P/N), where N is the number of processors. As N tends
to infinity Amdahl’s law predicts that maximum speedup will be 1/S, as the
original P/N term tends to zero. As an example if we had P = 0.99, so 99%
of our problem can parallelised, 64 processors would run our program 39 times
faster. For 128 processors the speedup is 56 times, for 1024 processors it is 91.
As the number of processors continues to increase the speedup tends to 100.
If P = 0.9 the law predicts a maximum speed up of 10, and if half only our
program can be parallelized, P = 0.5 and maximum speed up is 2, regardless
of the number of processors available. It was this argument, in the late 1960’s,
that encouraged hardware development away from multi-processor and towards
faster processors.

In the late 1980’s Gustafson [11] argued that Amdahl’s law is overly pes-
simistic, as it assumes that as we increase the available parallel processors we
continue to keep the workload fixed and hope for reduced runtime. That is, it
is a ”fixed-size speedup” model and assumes N and P are independent; multi-
processing is only used to improve response time. Gustafson assumes that prob-
lem size also scales with the number of processors, i.e. as we get more processors
we increase the problem size and that run time, not problem size, is a constant.



Review of Literature on Parallel Constraint Solving 3

Gustafson observed that the parallel or vector parts of a program scales with
problem size and the serial part does not (it diminishes proportionally). Conse-
quently as we get more processors the workload grows and P increases resulting
in an increase in speedup. This is the ”fixed-time speedup” model and an exam-
ple is weather forecasting, where we use multi-processors to increase the quality
of our results (the weather prediction) in a fixed amount of time (before the
evening news).

A third model is ”memory-bounded speedup” [35]. As we increase the number
of processors we increase the amount of memory available. Instead of keeping
execution time fixed we increase the size of the problem to fill available memory
and increase execution time, i.e. memory capacity is considered the dominant
factor.

Hill and Marty [16] looked at asymmetric designs, where individual cores in
a multi-core chip have different features. They argue that best performance will
be had from chips that have a mix of high and low performance cores. They
claim that we need a third Moore’s law: the first law is doubling in performance
by reducing component size and increasing clock speed; the second law results in
doubling of cores per chip; the third law is a doubling in the amount of software
that can be run in parallel and that software must become a producer rather
than a consumer of performance gains. They also propose that we do not just
consider speedup but also ”costup”: an increase in performance that is greater
than the increase in cost, be it measured in money or energy.

Sun and Chen [36] argue that multicore architectures are fundamentally scal-
able and not limited by Amdahl’s law and that the limits to performance will be
the ”memory wall”, i.e. that data access will be the limiting factor. The rate of
improvement in processor speed exceeds that of improvements in speed of mem-
ory and with time the performance gap will grow excessively large. In 1995 Wulf
and McKee [37] predicted that performance degradations due to cache misses,
with subsequent memory accesses, would exceed any improvements in processor
speed. They predicted that ”... in 10 to 15 years memory access will cost, on
average, tens or even hundreds of processor cycles.”. In 2001 typically execution
speed was 1 nanosecond, and a fetch from main memory 100 nanoseconds. By
2005 this gap had grown so a fetch from main memory takes 220 CPU cycles.
However, Sun and Chen suggest that multicore architectures might also reduce
the effect of the memory wall. Amdahl painted a dark picture and this had a pro-
found effect on the subsequent direction of hardware development. Sun, Chen,
Ni, Gustafson, Hill, Marty and others have tried to bring some light back to the
picture and ”... shatter the pessimistic view of limited scalability of multicore
architectures ...”

One current area of great interesting is solving on GPUs. Almost all modern
desktops and laptops provide a powerful GPU, and there are several popular
methods of utilising GPUs, including CUDA[26] and OpenCL[10]. Using GPUs
has lead to orders of magnitude improvement on many important problems, in-
cluding k nearest neighbour [7], Max-SAT [23] and SAT [20]. One common thread
in these papers is that GPU provides the greatest improvements on problems



4 Gent, Jefferson, Miguel, Moore, Nightingale, Prosser, Unsworth

which can be solved by massively parallel simple calculations. GPUs are not
a silver bullet, and direct ports of existing algorithms to GPU often perform
poorly.

3 Parallel Consistency and Propagation

In 1990 Kasif [18] showed that the problem of establishing arc-consistency (AC)
is P-complete i.e. the problem is not inherently parallelisable under the usual
complexity assumptions. This is done by giving log-space reductions of AC to
horn-clause satisfaction and vice versa. Kasif shows that in the worst case we
cannot establish arc-consistency polynomially faster with a polynomial number
of processors. This is no surprise, as we have to do a chain of deductions in
arc-consistency, where each depends on (some subset of) the rest. We can read
this as being fatal to the enterprise of parallel consistency, but then, it is not
fatal to solving constraint problems that they are NP-complete! So we have to
take P-completeness into account rather than regard it as fatal.

3.1 Parallel Arc-Consistency

There has been a steady stream of work on distributed consistency algorithms.
One of the justifications of this is that the problem itself may be distributed
geographically or due to organisational structures (such as in Prosser, Conway
and Muller [28]). The other justification is speed.

In 1995 Nguyen and Deville presented a distributed AC-4 algorithm DisAC-4
[24]. A journal version of this work was published in 1998 [25]. The algorithm is
based on message passing. The variables are partitioned among the workers, and
each worker essentially maintains the AC4 data structures for its set of variables.
When a worker deduces a domain deletion, this is broadcast to all other workers.
Each worker maintains a list of domain deletions to process (some generated
locally and others received from another worker). The worker reaches a fixpoint
itself before broadcasting any domain deletions, and waiting for new messages
from other workers. The whole system reaches a fixpoint when every worker
has processed every domain deletion. It may be a difficult problem to partition
the variables such that the work is evenly distributed. The experimental results
are mixed, with some experiments showing close to linear speedup, while others
show only 1.5 times speedup with 8 processors. In 2002 Hamadi [13] presented
an optimal distributed AC algorithm, DisAC-9, optimal with respect to message
passing whilst outperforming the fastest centalized algorithms. Therefore most,
if not all, seem to demonstrate that the P-completeness of arc-consistency is
indeed non-fatal.

3.2 Parallel Propagation of Non-Binary Constraints

In 1998, Ruiz-Andino, Araujo, Sáenz and Ruz [32] presented a distributed prop-
agation algorithm for n-ary functional constraints. These constraints are rep-
resented as indexicals, where for each constrained variable/value pair there is



Review of Literature on Parallel Constraint Solving 5

a set of (n − 1)-tuples representing the support set for that pair. The CSP is
split into n subsets such that each constraint appears in exactly one subset. If
a variable is associated with constraints in more than one set then that variable
is duplicated. Each subset is propagated sequentially by its own processor and
any domain reductions of variables shared between processors is communicated
between processors. The experiments presented show the relative performance
gains by increasing the number of cores they make available to their algorithm.
First consistency is established, then a variable assignment is made and consis-
tency is re-established. This is repeated until a solution is found or a variable
domain is wiped-out. The performance of this technique is highly dependent
on the quality of the distribution of the CSP, which is a difficult problem in
itself. The conflicting optimisation criteria for quality of a constraint distribu-
tion are minimising the network traffic whilst maximising the distribution of the
propagation frontier. It appears that this technique will not handle high arity
constraints well due to increased communication cost.

Parallel propagation has been proposed for numerical problems, where the
variable domains are infinite. Domains are represented as an interval using two
floating-point numbers, and the objective of propagation is to narrow the in-
tervals. Although we are ignorant of this area of constraint programming, we
would like to mention one paper. In 2000, Granvilliers and Hains [9] proposed a
parallel propagation algorithm for non-linear constraints. This was evaluated on
a Cray multiprocessor. The gain from using 64 processors (compared to 1 pro-
cessor) varies from almost nothing to about 6 times, depending on the problem
instance.

4 Multi-agent Search

Assuming we have n processors: a speedup of less than n is sub-linear, equal to
n linear, greater than n super-linear. Probably the first report of super-linear
speed up is due to Rao and Kumar [29] in parallel depth-first search on the
15-puzzle. They argue that if all solutions are uniformly distributed about the
state space then average speedup can be superlinear.

The next body of work to report this phenomena was multi-agent search.
In multi-agent search we have one problem and a collection of problem solv-
ing agents. Each agent is capable of solving the problem independently, agents
may be different, and agents might communicate. The agents then work on their
copy of the problem, possibly communicating with each other. One of the earli-
est examples of this is due to Clearwater et al [5]. To demonstrate the power of
cooperative problem solving the Dynamics of Computation Group investigated
the time to solve word puzzles, posed as constraint satisfaction problems, us-
ing a collection of agents. Each agent could solve the problem independently.
Agents wrote “hints” to a shared blackboard, and agents randomly read hints
whilst solving the problem. As the number of agents increases, and the diversity
amongst agents increases a “combinatorial implosion” occurs with a subsequent
super-linear speed up in problem solving. They present as an explanation of this



6 Gent, Jefferson, Miguel, Moore, Nightingale, Prosser, Unsworth

phenomena “... the appearance of a lognormal distribution in the effectiveness
of an individual agent’s problem solving. The enhanced tail of this distribution
guarantees the existence of some agents with superior performance.” The idea of
multi-agent search was further explored in the portfolio-based search proposed
by Gomes and Selman [8].

The SAT community has been quick to exploit multi-agent search. ManySAT
[12] exploits the main weaknesses in DPLL solvers, i.e. their sensitivity to pa-
rameter tuning, to create a population of diverse SAT solvers. The SAT solvers
are then allowed to share conflict-clauses discovered during search. In essence
ManySAT is an invocation of Clearwater, Huberman and Hogg’s cooperative
problem solving strategy, but rather than share hints agents share nogoods, i.e.
facts as to where solutions cannot exist. A similar approach is reported in [17].
The technique is to run multiple independent SAT solver instances at the same
time. They may search the same search spaces, at least partially, but this is
slightly avoided because they share learned clauses. Specifically, SAT solvers
are spawned in a grid and when they eventually fail after timeout, they return
learned clauses to the master. The master then doles out more work, but gives
subsequent processes some clauses learned by previous processes. The advan-
tages are that few changes are required of solvers to fit into this framework,
just the ability to print out their learned clauses at the end. The most success-
ful strategy for choosing what clauses to share is to pick the shortest available
ones. The best strategy in terms of nodes is to the pick the clauses that are
independently learned by the most different spawned solvers. An analysis of the
heavy tail phenomenon of solver runtimes shows that this technique can win big
because each solving attempt is randomized compared to previous ones, as well
as the fact clauses are shared. It appears that multiple instances with sharing
is more successful than just multiple instances. A question not really answered
is that the authors don’t show if their solver is work efficient, i.e. it wins on
wallclock time, but does it win in terms of total hours of effort? If it only wins
on wall clock time, the technique is only useful for very hard instances, where a
short amount of time is available to get an answer.

In Bordeaux et al [2] the context is “massively parallel constraint solving”, by
which the authors seem to mean 64+ cores. In this context, they are concerned
about the cost of communication, and explore approaches where communication
can be avoided. Their first idea is to perform search space splitting by adding
“hashing” constraints to the original model, which are unique for each core and so
sub-divide the search space. Promising results are reported. They then consider
portfolio approaches, rightly pointing out that, for arbitrary numbers of cores,
the generation of a portfolio has to be automated. To do this sources of “vari-
ability” are necessary, for which they identify three desirable qualities: scalable
(different settings will result in different runtimes); favourable (varying from the
default does not systematically worsen performance); solver-independent (ex-
ploiting the features of individual solvers prohibits re-usability). The variable
ordering provides such a source of variability. Results (this time on 128 cores)
are again very promising.



Review of Literature on Parallel Constraint Solving 7

Plingeling is the parallel version of lingeling [1]. It won the SAT Race 2010
special track for parallel solvers. It takes the sequential solver called lingeling
and runs N (mostly) independent instances of that solver. The first solver to
return a definitive answer wins the day. Each solver is given a different random
seed, different amounts of effort allocated to preprocessing, and a different initial
variable and value ordering (which determines the value tried when first assigning
a variable). When solvers learn unit clauses (i.e. assignments or non-assignments)
they share them with the master thread, which in turn sends them to the other
workers. Hence, apart from the sharing of unit clauses, this state of the art
parallel solver (as of 2010) depends on the fact that at least one sequential
solver can solve the problem quickly.

5 Parallelizing the Search Process

By “parallelizing the search process” we mean search parallelism at the granu-
larity of nodes or search states, hence each worker is close to being a standard
sequential constraint process but they are collectively orchestrated to be part
of the same overall search process. We refer below to both local and complete
search. For local search, parallel search has been used to increase the number
of starting points available in the local search [21]. For complete backtracking
search, the issues we will highlight include:

– how the search space is divided between workers;
– how workers communicate what portions of search they have completed and

what new solutions and improvements to their optimisation function they
have found;

– how state is shared (if appropriate);
– how learned constraints are shared between workers (if learning is imple-

mented); and
– specific implementation details and abstractions.

We describe both CSP and also CNF SAT solvers.
One of the earliest reports on parallel search is due to Bill Clocksin’s DelPhi

principle [6]. The context here is Prolog, which explores AND-OR trees, but the
ideas are equally applicable to the OR-trees common in constraint solving. The
motivation for this paper is to avoid the overhead incurred by having a shared
memory or copying computation state between processors. The central idea is
to associate a processor with each path through the search tree, hence avoiding
overhead due to transferring state between processors mid-path. However this
seems like a false economy as it results in duplicated work (think of two branches
that differ only at the very bottom). Usually we don’t have enough processors to
allocate one to each of the possible paths. So if we have n processors we explore
all log2n paths. If we find a solution, terminate otherwise consider the log2k-bit
extensions to these paths (where k is the number of processors we have left -
there is some art and strategy to this as k will continue to increase as the original
log2n bit paths are explored) and continue. In fact to continue DelPhi search



8 Gent, Jefferson, Miguel, Moore, Nightingale, Prosser, Unsworth

starts from scratch again in order to be in the right state (the paths are stored
very compactly as bit strings).

Perron was one of the first to report on parallel search in a commercial Con-
straint Programming toolkit [27], the 1999 update of ILOG’s Solver toolkit. The
search space is represented as a tree of nodes/search states partitioned into an
explored part, a frontier and an unexplored part. New states are entered using
recomputation, i.e. make a sequence of decisions to reach the starting point then
begin search. This is general enough to allow more exotic search algorithms than
DFS but also allows nodes to be allocated to different processors on a shared
memory machine. Each processor runs its own search process exploring differ-
ent parts of this common search tree, with a communications process ensuring
work balancing and termination detection. Empirical evaluation was on a 4 pro-
cessor machine using jobshop scheduling problems, i.e. optimisation problems
rather than search for first solution. When using quasi-complete search (vari-
ants of LDS) parallelism showed a linear speed up, but with depth first search
improvements were less convincing. Therefore results are less than conclusive.

In 2000 Schulte reports on parallel search made simple [34]. Schulte shows
how parallel search by work splitting can be achieved using Oz/Mozart, a sys-
tem which contains constraint reasoning and concurrency, making it a natural
implementation choice. The basic unit of computation is the search node (called
space in this paper). This is a natural choice because the underlying goal of the
paper is to exploit computational resources that may be widely available but
also idle, across different machines. Thus it is reasonable to assume that mem-
ory is not shared between computational units, and that communication costs
between units are relatively large although not prohibitive (i.e. ethernet). The
approach is therefore work-sharing, mediated by a single manager, and with a
coarse granularity. Results show close to linear speedup (between a 4 and 50%
overhead associated with sharing), although on up to only six workers, which by
now is a number of cores that a single machine might have, instead of spread
across a lab environment.

In 2006 Michel, See and Van Hentenryck presented parallel local search in
COMET [21] and deal with distribution (over multiple machines). The paper de-
scribes an architecture for distributing the work over multiple (heterogeneous)
machines. The distribution of tasks is intended to be nearly independent of the
COMET code that describes the search. The COMET code given as examples
in the paper describes various local search strategies including genetic algo-
rithms and constraint-based local search [15]. The examples given all work by
distributing different starting points in the local search space to different ma-
chines, rather than executing different starting points sequentially on one ma-
chine. The experimental results demonstrate close to linear speedups. In 2007
they extend their work in [22]. The COMET constraint programming toolkit
is enhanced to allow multicore parallel search. This is done “under the hood”
so that a constraint programmer need not know that it is taking place or how
it is implemented. Each processor supports a worker. When a worker explores,
i.e. expands a current search node, it produces new unexpanded search nodes,



Review of Literature on Parallel Constraint Solving 9

where an unexpanded node is a self-contained subproblem specified as a seman-
tic path. Parallel COMET uses a technique called work stealing where workers
who have run out of work take unexpanded nodes from other workers, leaving
them less work to do and keeping all workers busy. It is implemented as follows:
Search nodes are then represented as continuations [30] and are added to a cen-
tral pool. When workers are idle they steal continuations from the central pool,
and this is synchronized; in the case of optimization problems workers commu-
nicate new bounds on the objective function, again synchronized. Experiments
were performed on NQueens, Scene Allocation, Graph Colouring and Golomb
Rulers using depth first search and limited discrepancy search (LDS) on 1 to 4
processors. Speed ups were a bit less than linear, although superlinear speedups
occured with LDS and this was attributed to the order that continuations were
stolen, disrupting the normal search order.

We will now describe a couple of papers on parallelisation of CNF SAT
solvers. In these papers, the emphasis is on how learned clauses are shared, since
learning is an important component of SAT solvers which is moreover tough to
parallelise due to the fact a large amount of memory and time spent processing
learned clauses. Hence various techniques are used to encourage only clauses
that are likely to propagate elsewhere are shared.

In 2008 Chu and Stuckey presented PMiniSAT [4]. MiniSat 20.0 is paral-
lelized using work stealing. The solver uses several techniques for sharing clauses
between threads. Firstly, all clauses with length beneath a certain threshold are
shared between all threads; this is a previously used technique. Secondly, and this
is a new idea, a new measure called effective length is used: the effective length of
a learned clause is evaluated per thread, and it is the number of non-false literals
in the clause, i.e. the number of literals (minus one) that still need to be set false
for the clause to unit propagate. Only clauses whose effective length is less than
a particular threshold are accepted by other threads. Hence clauses are preferen-
tially shared between threads searching “close” paths in search. Third, another
new idea, a thread is able to store clauses in a suspended state until it is working
on another chunk of work where it is unit. Unfortunately the details of this are
very sketchy and no implementation is described. Together these techniques are
somewhat similar to cooperation between agents, i.e. rather than share hints on
where solutions might lie, share facts where solutions cannot exist.

In 2009 we have PaMiraXT [33], a hybrid multicore and multicomputer SAT
solver. On each available computer it uses all available cores, and it uses all
available computers. The whole system searches a single SAT model using the
guiding path algorithm. This means that they all search different parts of the
same tree and steal work from each other when one process runs out. As this is
about SAT, a lot of the paper is concerned with how to share clauses efficiently
and effectively. On each computer, the solvers all share a single clause database
and they all propagate all the clauses of the other processes. The clauses are all
stored in a shared read only memory segment and the solvers keep their watches
in their own memory space, to avoid contention. They also keep some extra
pointers to literals they believe are more likely to be unset, and apparently in



10 Gent, Jefferson, Miguel, Moore, Nightingale, Prosser, Unsworth

85% of propagations they don’t need to look at the shared clause DB at all. To
share work within a computer, there is a controlling process which steals work
and passes it to idle processes. The work stealing technique steals work near to
the root, i.e. the first left branch has its right branch stolen. The process that
is cannibalised is the one with the shortest guiding path, i.e. the fewest leading
closed assignments in its partial assignment. This is done because it intuitively
corresponds to a larger chunk of the search space. Between computers, the clauses
pass clauses of length 3 and under, which are integrated into the clause DBs on
each machine. These are passed using MPI in bundles of 50 clauses. The work
stealing between computers is elegant. The exact same mechanism is used as
within computer, i.e. a process requests some work from the controller, but
instead of solving it directly it just sends it to another computer for solving. The
experiments suggest that it’s a good technique. The solver is very fast on a single
core, which obviously helps. When it is applied to multiple cores and computers
usually adding another core speeds up the wallclock time. Unfortunately total
solve time is not provided because experiments, are based on wallclock time.
Hence this work makes finding a solution faster, but it is not possible to tell how
work-efficient it is.

In [3] Confidence-based Work Stealing in Parallel Constraint Programming is
presented. The authors point out that work stealing not only allows load balanc-
ing, but also influences the order in which parts of the search tree are explored. In
the papers described above the strategy was usually to steal from as close to the
root as possible. The paper includes a examples showing how it can sometimes
be much better to steal “left and low” (i.e. as deep as possible) but sometimes
stealing high can be better. The message of course is that it should be dynamic.
They claim that the presence of a branching heuristic complicates the process
of finding a good stealing strategy. Consequently the plan is to steal based on
confidence: the estimated distribution of solution densities among the children
of a node. When doing binary branching, this is equivalent to confidence in the
heuristic (since it chooses that left branch). Ideally the user should provide a
confidence function for the heuristic, but the authors show how a simple sub-
stitute can still work when this is not available. Confidence values are updated
during search. However, in practice they found that stealing too low tends to
increase the communication cost. Hence they set a bound above the average fail
depth below which worked cannot be stolen. Experimental results demonstrate
the technique’s effectiveness ranging from speedups of 7 times to superlinear on
the benchmarks in the paper.

Kotthoff and Moore [19] describe an implementation technique for distributed
search with no sharing between workers. The implementation assumes a job
queueing system is available as a substrate. A standard solver is wrapped in a
script that does the following: (1) run until time limit reached or completion (1.1)
if solution found then terminate all jobs and return solution (1.2) if search space
complete then do nothing and stop (1.3) else split the variable we are currently
trying to assign into n parts (where n is a constant) (1.3.1) to each job add a
set of restart nogoods that rules out the search space explored so far in current



Review of Literature on Parallel Constraint Solving 11

solver (1.3.2) submit each slice to the job server. Hence the technique is similar
to work stealing but less dynamic – work cannot be stolen until a time limit is
reached. The novelty in this approach is twofold: (a) using a job server to avoid
implementing distribution, fault tolerance, etc.; and (b) using restart nogoods
rather than recomputation to rule out previously explored search. The former
should be self-explanatory. The latter may not be: Recomputation implicitly
assumes that the parent will continue to search and it is giving away only a
part of its search space. This technique works instead by the parent giving up
all its search space and splitting itself into n parts. Restart nogoods ensure that
the child processes are together given the remaining part of the parent search
space, and made to search different portions of it by the splitting constraints.
It is not determined if this was actually better than recomputation, it is merely
a convenient implementation. It is more flexible however, in the sense that the
children are allowed to search the remaining space any way they wish, instead
of always having to stick to the early part of the parent’s variable ordering. This
allows each solver to use a different search strategy, but no experiments were
carried out doing this.

6 Combined Parallel Search and Parallel Consistency

We finish this review with a single paper, probably one that best represents
the state of the art [31]. This is an extension of the same authors’ 2009 pa-
per. The object of this work is to parallelise both search and consistency. By
the latter they mean splitting the set of constraints to be propagated among
threads, rather than parallelising the work of a single constraint. They begin
with an example demonstrating that a simple search parallelism scheme is at
the mercy of the location of the solution(s) in the search tree - if they are all go-
ing to be found by the first thread anyway, the others are just adding overhead.
They introduce some terminology: parallel search = OR parallelism = data par-
allelism and parallel consistency = AND parallelism = task parallelism. They
claim that, for many models, solvers spend an order of magnitude more time
enforcing consistency than they do searching, in which case data parallelism is
less suitable. Another flaw is that data parallelism naturally puts more stress on
the memory bus (for this they point to Sun & Chen [36]). In their approach to
parallel consistency, they require synchronization of pruning, but do not share
data during pruning to avoid upsetting the internal data structures of global
constraints. Rather than fixing which threads deal with which constraints, at
each node each consistency thread takes a set of constraints to propagate from
the queue. When all constraints in the queue have been processed, updates are
actually committed. The process can stop early if one of the threads detects in-
consistency. When combining both parallel search and consistency, each search
thread gets an associated set of consistency threads. An alternative architec-
ture is briefly discussed in which all threads take from a shared work pool, but
the authors claim that scheduling uptake from this pool could be prohibitively
complex. Experiments are on Sudoku and n-queens using up to 64 threads on



12 Gent, Jefferson, Miguel, Moore, Nightingale, Prosser, Unsworth

8 cores. The gains are modest. They identify three problems: inefficiencies in
parallel consistency caused by not sharing data, the synchronization of pruning
described, and third the memory bus.

7 Conclusion

This paper has presented a preliminary survey of the literature on parallel con-
straint solving. Despite early pessimism based upon Amdahl’s law and Kasif’s
proof of P-completeness, more recent results using smart work stealing, parti-
tioning of the search space and multi-agent approaches give considerable cause
for optimism. Irrespective, the apparent trend is that multicore computing is
the norm, with large increases in the number of cores in the immediate future.
Whether we would prefer the comfort of a fast single-processor world or not,
therefore, we must embrace this paradigm.

References

1. A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. In
Technical Report 10/1, Institute for Formal Models and Verification, Johannes
Kepler University, 2010.

2. L. Bordeaux, Y. Hamadi, and H. Samulowitz. Experiments with massively parallel
constraint solving. In IJCAI2009, pages 443–448, 2009.

3. G. Chu, C. Schulte, and P.J. Stuckey. Confidence-based Work Stealing in Parallel
Constraint Programming. In Principles and Practices of Constraint Programming,
pages 226–241, 2009.

4. G. Chu and P.J. Stuckey. PMiniSAT: A Parallelization of MiniSAT 2.0. In SAT
Race 2008, 2008.

5. Scott H. Clearwater, Bernardo A. Huberman, and Tad Hogg. Cooperative Solution
of Constraint Satisfaction Problems. Science, 254, 1991.

6. W. Clocksin. Principles of the DelPhi parallel inference machine. Computer Jour-
nal, 30(5):386–392, 1987.

7. Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search
using gpu. Computer Vision and Pattern Recognition Workshop, 0:1–6, 2008.

8. C.P. Gomes and B. Selman. Algorithm Portfolios. Artificial Intelligence, 126(1-
2):43–62, 2001.

9. Laurent Granvilliers and Gaétan Hains. A conservative scheme for parallel interval
narrowing. Information Processing Letters, 74(3-4):141–146, 2000.

10. Khronos Group. Opencl. http://www.khronos.org/opencl/.
11. J. L. Gustafson. Revaluating Amdahl’s law. Comm ACM, 31, Number 5:532–533,

1988.
12. Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: Solver Description. In SAT Race

2008, 2008.
13. Youssef Hamadi. Optimal Distributed Arc-Consistency. Constraints, 7(3-4):367–

385, 2002.
14. J. Held, J. Bautista, and S Koehl. From a few cores to many: A tera-scale com-

puting research overview. intel White Paper, 2006.
15. Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. The

MIT Press, 2009.



Review of Literature on Parallel Constraint Solving 13

16. M.D. Hill and M.R. Marty. Amdahl’s law in the Multicore Era. IEEE Computer,
pages 33–38, 2008.

17. A.E.J. Hyvärinen, T. Junttila, and I. Niemelä. Incorporating clause learning in
grid-based randomized sat solving. JSAT, 6, 2009.

18. Simon Kasif. On the parallel complexity of discrete relaxation in constraint satis-
faction networks. Artificial Intelligence, pages 275–286, 1990.

19. L. Kotthoff and N.C.A. Moore. Distributed Solving Through Model Splitting. In
TRICS 2010, 2010.

20. Panagiotis Manolios and Yimin Zhang. Implementing Survey Propagation on
Graphics Processing Units. In Theory and Applications of Satisfiability Testing
– SAT 2006, volume 4121/2006 of LNCS, pages 311–324, 2006.

21. L. Michel, A. See, and P. Van Hentenryck. Distributed Constraint-based local
search. In Principles and Practices of Constraint Programming, pages 344–356,
2006.

22. Laurent Michel, Andrew See, and Pascal Van Hentenryck. Parallelizing Constraint
Programs Transparently. In Principles and Practices of Constraint Programming,
pages 514–528, 2007.

23. Asim Munawar, Mohamed Wahib, Masaharu Munetomo, and Kiyoshi Akama. Hy-
brid of genetic algorithm and local search to solve max-sat problem using nvidia
cuda framework. Genetic Programming and Evolvable Machines, 10:391–415, De-
cember 2009.

24. Thang Nguyen and Yves Deville. A distributed arc-consistency algorithm. In First
International Workshop on Concurrent Constraint Satisfaction, 1995.

25. Thang Nguyen and Yves Deville. A distributed arc-consistency algorithm. Science
of Computer Programming, 30:227–250, 1998.

26. NVIDIA. Cuda. http://www.nvidia.com/object/cuda_home_new.html.
27. L. Perron. Search Procedures and parallelism in constraint programming. In

Principles and Practices of Constraint Programming, pages 346–361, 1999.
28. P. Prosser, C. Conway, and C. Muller. A constraint maintenance system for the

distributed resource allocation problem. Intelligent Systems Engineering, pages
76–83, 1992.

29. V.N. Rao and V. Kumar. Supelinear speedup in parallel state-space search. In
8th Conference on Foundations of Software Technology and Theoretical Computer
Science FSTTCS (LNCS 338), pages 161–174, 1988.

30. John C. Reynolds. The discoveries of continuations. Lisp Symb. Comput., 6:233–
248, November 1993.

31. C.C. Rolf and K. Kuchcinski. Combining parallel search and parallel consistency
in constraint programming. In TRICS workshop at CP2010, pages 38–52, 2010.

32. Alvaro Ruiz-Andino, Lourdes Araujo, Fernando Sáenz, and José J. Ruz. Paral-
lel Arc-Consistency for Functional Constraints. In Workshop on Implementation
Technology for Programming Languages based on Logic, ICLP, pages 86–100, 1998.

33. T. Schubert, M. Lewis, and B. Becker. PaMiraXT: Parallel SAT solving with
threads and message passing. JSAT, 6:203–222, 2009.

34. Christian Schulte. Parallel Search Made Simple. In TRICS2000, pages 41–57,
2000.

35. X.H. Sun and L.M. Ni. Another View of Parallel Speedup. In Proc Supercomputing,
pages 324–333, 1990.

36. Xian-He Sun and Yong Chen. Reevaluating Amdahl’s Law in the multicore era.
Journal of Parallel and Distributed Computing, 70:183–188, 2010.

37. W.A. Wulf and S.A. McKee. Hitting the memory wall: implications of the obvious.
ACM SIGARCH, 23, Issue 1:20–24, 1995.


