
An Empirical Study of Learning and Forgetting
Constraints

Ian P. Gent, Ian Miguel and Neil C.A. Moore
{ipg,ianm,ncam}@cs.st-andrews.ac.uk

School of Computer Science, University of St Andrews, St Andrews, Scotland, UK.

Abstract. Conflict-driven constraint learning provides big gains on many
CSP and SAT problems. However, time and space costs to propagate
the learned constraints can grow very quickly, so constraints are often
discarded (forgotten) to reduce overhead. We conduct a major empiri-
cal investigation into the overheads introduced by unbounded constraint
learning in CSP. To the best of our knowledge, this is the first pub-
lished study in either CSP or SAT. We obtain two significant results.
The first is that a small percentage of learnt constraints do most prop-
agation. While this is conventional wisdom, it has not previously been
the subject of empirical study. Second, we show that even constraints
that do no effective propagation can incur significant time overheads.
Finally, by implementing forgetting, we confirm that it can significantly
improve the performance of modern learning CSP solvers, contradicting
some previous research.

1 Introduction

In this paper, we conduct an empirical investigation into the overheads intro-
duced by unbounded constraint learning in CSP. To the best of our knowledge,
this is the first published study in either CSP or SAT. We obtain two primary
results. The first is that a small percentage of learnt constraints do most propa-
gation. Although this is conventional wisdom, no published study exists. Second,
we show that even constraints that do no effective propagation can incur sig-
nificant time overheads. This clarifies conventional wisdom which suggests that
watched literal propagators can have lower overheads when not in use. Finally, we
show that forgetting can improve performance of modern learning CSP solvers
by exhibiting a working implementation, contradicting some previous published
research.

2 Background: Learning and Forgetting in SAT and CSP

Nogood learning is an important CSP search technique. In brief, when the solver
reaches a dead-end, a new constraint is added to rule out future branches that

Proceedings of the 18th RCRA workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion (RCRA 2011).
In conjunction with IJCAI 2011, Barcelona, Spain, July 17-18, 2011.



will fail for the same reason. We experiment on a solver implementing Kat-
sirelos et al ’s [15–17] generalised nogood learning (g-nogood learning or, more
succinctly, g-learning). The first step at a dead-end is to analyse the earlier de-
cisions and propagation that contributed to the current failure. We seek a set of
assignments and disassignments that, if repeated, lead directly to a failure. To
analyse propagation, explanations are used:

Definition 1. A disassignment is a pair of variable x and value a (denoted
x 8 a) such that a has been ruled out as a possible value for x at the point
in search under consideration. An assignment is a pair of variable x and value
a (denoted x ← a) where variable x is set to a at the point in search under
consideration. An explanation for disassignment x 8 a (or assignment x← a)
is a set of assignments and disassignments that are sufficient for a propagator
to infer x 8 a (or x← a).

After explanations are processed to produce a new constraint, the solver
backjumps and the constraint is added. It has the property that it will propagate
immediately to mimic a right branch decision1, guaranteeing completeness. The
power of g-learning comes from learned constraints proceeding to propagate
and being combined by iterative application of the above process into more
powerful constraints that can remove subtrees of the search tree, as opposed to
just providing a shortcut to propagation. While brief, the preceding description
is sufficient for this paper. The reader is referred to [20, 15] for more detail. All
of the experiments to follow in this paper are based on the minion solver [10]
amended to do g-nogood learning.

G-learning is extremely effective on some types of benchmark, but its over-
heads can dominate on others. First, there is an overhead associated with in-
strumenting constraint propagators to store explanations, which are needed to
produce the new constraints. This problem is mitigated by using lazy explana-
tions [9], which reduce the overhead by producing explanations only when they
are needed, thereby saving work. In the experiments to follow, lazy explanations
are used. However the new constraints must still be propagated, slowing the
solver down. Second, g-learning was originally described as unrestricted learning
[16], where learned constraints are kept forever, resulting in worst case exponen-
tial memory usage. In our experience this causes g-learning solvers to run out of
RAM on commonly available systems within an hour.

Forgetting in SAT and constraints. The fact that unrestricted learning
is impractical has been understood for many years. One way to cope is to store
constraints more efficiently, e.g. [22], but no technique can remove the fact stor-
age space still grows unless the set of constraints can be generalised. A second
way is to design algorithms to be fundamentally limited in the amount of space
they can consume, e.g., dynamic backtracking [11]. A third method is to bound
learning at the time constraints are created, by suppressing constraints that take
up too much space. Bounding at creation time has been used by Dechter and

1 note that the propagation is not necessarily the negative of failed left branch, but it
simply an additional literal not previously set

2



Frost [5, 8] in the context of CSP learning solvers; and by Bayardo and Schrag
[1], and Marques-Silva and Sakallah [18] for SAT solvers.

A fourth method of reducing overheads is to forget (i.e. remove) constraints
some time after they were learnt by some heuristic method. Forgetting con-
straints after adding them is, to the best of our belief, used universally in conflict-
driven clause learning (CDCL) SAT solvers, e.g. [1, 6, 12]. We believe that this
is the first report of the successful use of forgetting in the core of a CSP solver
since the advent of g-learning: relevance-bounding forgetting [1] was used in [8]
but with s-nogoods which have been superseded in practice by g-nogoods, and
relevance-bounding forgetting was tried unsuccessfully in [16]. In [20, 7], forget-
ting is an important part of a CSP solver, but via the external use of a SAT
solver that itself implements forgetting.

3 Experiments on clause effectiveness

The following experiments analyse the overheads of unbounded constraint learn-
ing, showing that a small proportion of all learned constraints typically do the
vast majority of all useful propagation and that they take a small proportion of
overall time to do so.

3.1 Methodology

In the following experiments each instance was run once with a limit of 10
minutes search time. The reason why they were not run multiple times was that
in this experiment the counts are important and variation in time is tolerated.
They ran over three Linux machines with 8 Xeon E5430 cores @ 2.66GHz and
8GB memory. Lazy explanations [9] (mentioned in §2) and the conflict-directed
dom/wdeg [4] variable ordering heuristic were used throughout.

We use a large, varied and inclusive set of 2,028 benchmark instances from 46
problem classes. The set has been chosen to include as many instances as possi-
ble, provided they are modelled using only all-different, table, negative table, dis-
junction, lexicographic ordering, (weighted) sum≤, (weighted) sum<, x ≤ y + c,
=, 6=, x ← c, x 8 c, bx/yc = z, x mod y = z and x × y = z constraints.
See [2] for definitions of these. Our sources are Lecoutre’s XCSP repository
(http://tinyurl.com/lecoutre) and our own stock of CSP instances. We in-
clude every extensional instance of the 2006 CSP solver competition, together
with further instances from the random, industrial and academic spheres. Models
runnable using minion can be found at http://dl.dropbox.com/u/16721904/

instances.zip.

3.2 Small subset of clauses typically do most propagation

Received wisdom states that a small number of learned constraints do the ma-
jority of propagation in learning solvers, yet we are aware of no published ev-
idence substantiating this view. The fact that constraint forgetting techniques

3



are effective in learning solvers is consistent with the belief: if few constraints
dominate collectively most can be thrown away without harming search. How-
ever constraint forgetting in some form is a positive necessity to avoid running
out of memory, so it would still benefit the solver even if individual constraints
were comparably effective. Irrespective, the effect must be quantified, and un-
derstanding the effect quantitatively might help to design effective forgetting
strategies.

Procedure Measuring effectiveness of an individual constraint is more difficult
in a learning solver than in a standard backtracking solver, because the learning
procedure combines constraints together. Hence a constraint may do little prop-
agation itself, but constraints derived from it during the learning process may
do a lot. Hence the influence of a constraint may be wide. This is a subtle issue
and we have not attempted to measure it. Rather we will be measuring only the
direct effects of individual constraints, and not their “influence”.

Therefore, in this section, the number of unit propagations is used as a mea-
sure of the effectiveness of a learnt constraint. This choice is not immediate, so
we will now discuss why it was chosen. The problem is that propagations are
not necessarily beneficial if they remove values but do not contribute to domain
wipeouts or other failures. To get around this issue, as part of its clause for-
getting system (see §4.1) minisat [6] measures the number of times a constraint
has been identified as part of the reason for a failure. Hence, we did consider
using the number of propagations that lead to failure as a measure of constraint
effectiveness, rather than raw number of propagations. However, over our 2050
instances and 566,059 learned constraints, the correlation coefficient between
propagation count and count of involvement in conflicts is 0.96. In other words
each propagation is roughly equally likely to be involved in a conflict. Hence
the following results should apply almost equally to propagations resulting in
failure. The advantage of using the total number of propagations is that it is
more easily defined and less coupled with learning.

For efficiency reasons, solvers do not collect this data by default. In order
to carry out these experiments our solver was amended to print out a short
message whenever a constraint propagated, giving the unique constraint number
and the node at which the propagation occurred. These data were then analysed
externally with the aid of a statistical package. Although this slows the solver
down, the experiment is fair because counts are not affected.

Note that the later a constraint is posted, the less time is has to propagate.
Hence the number of raw propagations carried out by each constraint are not
directly comparable. To get around this, only constraints learned during the first
50% of nodes approximately are included, and for each constraint the number
of propagations are counted only over the following 50% of nodes, so that every
count is over the same number of nodes. For example, if the problem is solved
in 9999 nodes, constraints learned between nodes 1 and 5000 are included, and
the constraint learned at node 278 is counted from nodes 278 to 5277.

4



0 20 40 60 80 10
0

Percentile of constraint
C

um
. s

um
 o

f U
P

s

0 20 40 60 80 10
0

Percentile of constraint
C

um
. s

um
 o

f U
P

s

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

●

Fig. 1. What proportion of constraints are responsible for what propagation? – single
instance

Results and analysis For instance latinSquare-dg-8 all.xml.minion we
exhibit a graph that we will later show is representative of other instances.
The upper curve2 in Figure 1 shows what proportion of the best constraints
are responsible for what proportion of all unit propagations (UPs). By “best”
we mean doing the most propagations. Each point is an individual constraint
and the constraints are sorted by increasing propagation count moving from the
left to the right of the x-axis. The x-axis is the percentile of the constraint’s
propagation. The y-axis is the number of propagations accounted for by that
constraint and those with a lower percentile. For example, the circled point on
the x-axis is the median (50th percentile) constraint by propagation count: it
is the 5223th constraint, out of 10446. The total propagation count for all 5223
constraints is exactly 5223 [sic] out of a total of 26220 for all constraints, i.e. 20%
of the total. Hence the bottom 50% of constraints account for just 20% of all
propagation. The slope is shallow until the 80th percentile constraint (marked
by a small square), after which it steepens dramatically. Hence the top 20% of
constraints do a lot more work than the rest. This agrees with the hypothesis
that a minority of constraints do most propagation.

In §2 we noted that each constraint is guaranteed to propagate at least once.
This first propagation has the effect of a right branch, so does not contribute
effectively since the solver would have done this anyway. Hence we now report
results with these ineffective propagations deleted. In the black (lower) curve
in Figure 1 the same graph is shown with 1 subtracted from the propagation
count of each constraint. Here the curve is zero until the 80% percentile, meaning
that the worst 80% of constraints contribute no additional propagation after the
right branch, i.e. just one propagation each: just 20% of constraints do all useful
propagation and 10% do almost all.

The previous results focus on a specific instance, so we will now expand
analysis to all 949 instances from the test set that cannot be solved within 1000
nodes of search. This is done to ensure that a trend has a chance to establish: to

2 the points are close enough together to appear as a single curve, rather than distinct
points

5



P Min. 1st Qu. Median Mean 3rd Qu. Max.
1% 0.01 0.01 0.01 0.04 0.03 2.04
5% 0.01 0.02 0.04 0.09 0.09 2.04
10% 0.01 0.05 0.08 0.19 0.18 3.64
15% 0.01 0.09 0.13 0.31 0.31 3.91
20% 0.01 0.12 0.19 0.46 0.47 5.46
25% 0.01 0.17 0.27 0.64 0.68 6.80
30% 0.01 0.23 0.35 0.86 0.92 8.24
35% 0.01 0.30 0.46 1.11 1.22 9.69
40% 0.01 0.37 0.58 1.40 1.58 11.13
45% 0.01 0.47 0.72 1.73 1.99 12.57
50% 0.01 0.57 0.86 2.11 2.51 14.02
55% 0.02 0.67 1.00 2.56 3.22 16.33
60% 0.02 0.78 1.18 3.07 3.93 18.76
65% 0.02 0.89 1.34 3.65 4.86 21.27
70% 0.02 0.99 1.51 4.34 6.09 24.39
75% 0.02 1.09 1.70 5.15 7.56 27.51
80% 0.02 1.19 1.89 6.15 9.50 30.83
85% 0.02 1.32 2.08 7.40 11.75 37.07
90% 0.02 1.44 2.27 9.11 15.37 43.32
95% 0.02 1.55 2.48 11.68 21.88 50.00
100% 0.02 1.65 2.71 16.03 37.06 69.89

Table 1. What proportion of constraints are responsible for what propagation? – all
instances

analyse only a few constraints might be less meaningful. In Table 1 for each cho-
sen percentage P , we give what percentage of the best constraints are needed to
account for P% of overall non-branching propagation3. These results show that
usually a small proportion of the best constraints perform a disproportionate
amount of propagation. For example 10% of all propagation is performed by a
median of 0.08% and maximum of 3.64% of constraints, and 100% by a median
of 2.71% and a maximum of 69.89%. Hence the behaviour described above for a
single benchmark is robust over many instances: the best few constraints over-
whelmingly perform most non-branching propagation. If anything, the above
sample instance understates the effect, since it required about 20% instead of
the median of 2.71% of constraints to do all propagations.

Conclusion We have shown empirically that the best constraints are responsi-
ble for much of the propagation and thus search space reduction.

3 It may seem anomalous that some entries exceed P%, since the best P% constraints
must do at least P% of propagations. This apparent anomaly is because there may
be no integer number of constraints doing P% of propagation, so it is necessary to
overcount.

6



3.3 Clauses have high time as well as space costs

Unit propagation by watched literals [19] is designed to reduce the amount of
time spent propagating infrequently propagating constraints, by the possibility
of watches migrating to inactive literals that do not trigger and cost nothing
to propagate. Before describing the experiment, we will first briefly outline how
watched literal propagation works.

Unit propagation (UP) is a way of propagating clauses. Watched literals are
an efficient implementation of UP, first described in [19]. The idea is to watch
a pair of variables, that are not set to false. Provided that such variables exist,
a clause must be satisfiable, and unit propagation needn’t happen yet. Suppose
that one of these variables is set to false: if another non-false variable can be
found then the propagation watches it instead, otherwise the single non-false
variable has to be unit propagated to true immediately to avoid the constraint
being unsatisfied. The empirical evidence suggests that since the propagator only
cares about assignments to two variables it is efficient compared to other unit
propagators that watch all assignments (e.g. ones that count false assignments).
If the watched variables are set to 1 early in search then the clause will essentially
be zero cost until the solver backtracks beyond that point, because it will never
be triggered on those variables.

Hence, perhaps weakly propagating constraints do not cost much time, if
space is available to store them, since there is a possibility of infrequently prop-
agating constraints doing little work? Hence the next question is: do constraints
which do not propagate a lot cost significant time as well as space?

Procedure The minimum amount of time to process a single domain event
with a watched literal propagator can be on the order of a handful of machine
instructions, taking nanoseconds to run, during which time the system clock may
not tick. Hence, to obtain nano-scale timings, the solver keeps a running total of
the number of processor clock ticks as recorded by the RDTSC register specific
to Intel processors [13]. Each of these occupies 1/(2.66× 109) seconds, since we
used a 2.66 GHz Xeon E5430. The overhead of collecting data is very low, taking
only one assembly instruction to get the number, and a few more cycles to add
it to the running total.

At the end of search, all the cycle counts are printed out and analysed exter-
nally with the aid of a statistical package.

Results and analysis How does time spent correlate with unit propagations
performed? Figure 2 is a scatterplot for the single instance used in §3.2. Each
point represents a single constraint. The x-axis gives the number of unit propaga-
tions (including the right-branching initial one), and the y-axis the total number
of processor cycles used to propagate it during the entire search. First, and un-
surprisingly, as an individual constraint propagates more, it often requires more
time to do so. What may be surprising is that the worst case for constraints
is roughly constant, and independent of the number of propagations. That is,

7



Number of UPs
T

im
e 

(c
yc

le
s)

1 10 10
0

10
00

1e+05

1e+06

1e+07

1e+08

Fig. 2. How much time does propagation take?

constraints which do no effective propagation can take a similar amount of time
to propagate as constraints which propagate almost 1000 times. For this sample
instance, 74% of propagation time is occupied with constraints that never prop-
agate again after the first time. This suggests that learnt constraints can lead to
significant time overhead without doing any useful propagation.

Table 2 extends the study to the 1,923 instances out of the full set of 2,028
where at least one constraint is learned. Each row is a chosen percentage R%
of the total non-branching propagations, and the columns are summary statis-
tics for what % of the overall propagation time the best constraints take to
achieve R% of all propagation. A constraint is “better” than another if it does
more propagations per second of time spent propagating. For example, the third
row says that the median over all instances is that 10% of all non-branching
propagation can be done in just 0.62% of the time taken by the best available
constraints. Using the most efficient constraints, all non-branching propagation
can be achieved in a mean of less than a quarter of the time of using all con-
straints. All other time spent is completely wasted since it leads to no effective
propagation.

Conclusion The results on all instances confirm the result from the single
instance, and shows that learnt constraints which do no propagation contribute
significantly to the time overhead of the solver.

The design of watched literal propagators make it possible that constraints
that do not propagate will cost the solver very little in time. This is because the
watches could potentially migrate to ”silent literals” that do not trigger often.
Hence, we feel it significant that we have shown that this is often not the case,
and useless clauses can be very costly on an individual basis.

4 Clause forgetting

The above results suggest that, if picked carefully, the solver can often remove
constraints to save a lot of time at only a small cost in search size. As described
in §2, this is a well known and well used technique in both CSP and SAT.

8



R Min. 1st Qu. Median Mean 3rd Qu. Max.
1% 0.00 0.02 0.17 6.12 3.32 100.00
5% 0.00 0.05 0.33 6.17 3.32 100.00
10% 0.00 0.11 0.62 6.30 3.52 100.00
15% 0.00 0.18 0.95 6.50 3.82 100.00
20% 0.00 0.26 1.38 6.79 4.38 100.00
25% 0.00 0.35 1.88 7.12 5.11 100.00
30% 0.00 0.45 2.31 7.52 5.82 100.00
35% 0.00 0.54 2.85 8.07 6.82 100.00
40% 0.00 0.63 3.38 8.46 7.75 100.00
45% 0.00 0.71 4.03 9.01 9.10 100.00
50% 0.00 0.79 4.54 9.46 9.97 100.00
55% 0.00 0.91 5.38 10.50 11.67 100.00
60% 0.00 1.04 6.08 11.16 13.32 100.00
65% 0.00 1.20 6.87 11.97 15.10 100.00
70% 0.00 1.38 7.99 13.06 17.73 100.00
75% 0.00 1.58 9.06 14.00 19.62 100.00
80% 0.00 1.78 10.07 15.27 22.59 100.00
85% 0.00 2.03 11.35 16.78 25.91 100.00
90% 0.00 2.29 12.56 18.55 30.03 100.00
95% 0.00 2.59 14.31 20.76 34.05 100.00
100% 0.00 2.89 15.23 24.01 41.02 100.00

Table 2. How much time does propagation take?–all instances

Indeed Katsirelos and Bacchus have implemented relevance bounded learning
for a g-learning solver in [16]. They report poor results showing that relevance
bounding with k = 3 leads to more timeouts and slower solution time. However
a very small number of similar problems are tried so results are inconclusive.

In this section, we try a range of well-known existing strategies for forgetting
learned constraints.

4.1 Context

For size-bounded and relevance-bounded learning [5, 8] the solver must respec-
tively not learn the constraint if it has more than k literals in it or remove the
constraint once k literals become unset for the first time. Both have been ap-
plied successfully to the CSP in the past, but using a s-learning solver. Since
they were last tried, algorithms for propagating disjunctions have progressed
significantly with the introduction of watched literal propagation [19], meaning
that learned constraints are faster to propagate. Hence the techniques may no
longer be useful and, if they are useful, the optimal choice of parameters will
probably have changed as long clauses become less burdensome. Also, the learn-
ing algorithms applied have fundamentally changed with the advent of g-nogood
learning. Katsirelos has shown [15] that the properties of clauses change as a
result of g-learning, for example the average clause length can reduce. This also

9



motivates the re-evaluation of existing forgetting strategies. Finally, theoretical
results [14, 3] from SAT show that there is an exponential separation between
solvers using size-bounded learning and learning unrestricted on length, meaning
that the former may need exponentially more search than the latter on particu-
lar problems. This means that size-bounded learning is theoretically discredited,
but it remains to see how it performs in practice.

Recently there have been a collection of new forgetting heuristics in SAT
solvers, which are based on activity. Using activity-based heuristics the clauses
that are least used for conflict analysis are removed when the solver needs to free
space to learn new clauses. As well as guessing which clauses are least beneficial,
new strategies also decide how many to keep. This is a difficult trade off, be-
cause keeping more increases propagation time, but throwing them away reduces
inference power. The best choice is problem dependent. We will experiment on
what we will call the minisat strategy after the solver it originated in [6].

The strategy has 3 main components:

activity each clause has an activity score, which is incremented by 1 each time
it is used as an explanation in the firstUIP procedure

decay periodically, activities are reduced, so that clauses that have been active
recently are prioritised

forgetting just before the scores are decayed each time, half of all constraints
are removed with a couple of exceptions:

– those that have unit propagated in the current branch of search are kept,
– those with scores below a fixed threshold are removed first even if the

target of removing half has already been reached, and
– binary and unary clauses are always kept.

In order to implement this algorithm the frequency of decay & forgetting and
the divisor for decay must be supplied. The threshold below which all clauses
are removed is simply 1 over the size of the clause database.

4.2 Experimental evaluation

We will describe an experiment to test the effectiveness of the forgetting strate-
gies from the literature described above.

Implementing constraint forgetting As mentioned in §3.2 each learned con-
straint propagates at least once and this is necessary for the completeness of
g-learning. Hence when implementing bounded learning, our solver propagates
it once anyway even if the constraint is going to be discarded immediately.

In our implementation, currently unit clauses, a.k.a. locked clauses4, can be
slated for deletion meaning that they are not propagated any more, but the
memory cannot be freed until it is no longer unit. In our solver, restarts are not

4 nomenclature due to [6]

10



used. It is possible to prove that deleting clauses is safe (i.e. the solver is still
complete), provided that they are not locked.

For k relevance bounding, recall that the solver must remove the constraint
when k literals become unset for the first time. Our implementation works as
follows: when the constraint is created the literals are sorted by descending
depth at which they became false5 and the k’th depth is selected. When the
solver backtracks beyond depth k, exactly k literals will have become unset
and the constraint can be deleted. There is little runtime overhead using this
implementation.

The implementation of size-bounded learning and the minisat strategy follow
straightforwardly from the definitions given above.

Experimental methodology Each of the 2028 instances was executed four
times with a 10 minute timeout, over 3 Linux machines each with 2 Intel Xeon
cores at 2.4 GHz and 2GB of memory each, running kernel version 2.6.18 SMP.
Parameters to each run were identical, and the minimum time for each is used
in the analysis, in order to approximate the run time in perfect conditions (i.e.
with no system noise) as closely as possible. Each instance was run on its own
core, each with 1GB of memory. Minion was compiled statically (-static) using
g++ version 4.4.3 with flag -O3.

Beauty contest We tried each strategy with a wide range of parameters and in
Table 3 report a selection of the best parameters for each. The best parameters
were found by testing a wide interval of possible parameters, and finding a local
optimum. Close to the local optimum more parameters were tried to locate the
best single value where possible (e.g. for discrete parameters). minion with no
learning at all is also included in the comparison under name “stock.undefined”.
In the table, the strategies are abbreviated to name.parameter, except minisat
which is abbreviated to minisat.interval.decayfactor.

The “Beauty Contest” columns give both the number of instances solved and
the total amount of time spent. Hence an instance that times out does not count
towards instances solved and costs 600 seconds. The best strategy is that which
solved the most instances, taking into account overall time to break ties. In
the table the best strategies are listed first. Finally first and third quartiles and
median nodes per second are given. These statistics show the increase or decrease
in search speed. A solver with forgetting should have a higher search speed
because it has fewer constraints to propagate. The ‘Search measures’ columns
give measures of what effect each strategy has compared to unbounded learning.
This is a measure of how effective search is compared to unbounded learning, as
opposed to how fast. The columns are as follows:

Instances means the number of instances the variant and unbounded both
complete. The number of instances being compared in the following two
statistics.

5 this information is available from the learning subsystem

11



0.1 1.0 10.0 100.0 1000.0

stock solve time

sp
ee

du
p 

w
ith

 r
el

6 
vs

 s
to

ck

0.1

1.0

10.0

100.0

1000.0

10000.0

(a) No learning

0.05 0.50 5.00 50.00 500.00

unbounded solve time

sp
ee

du
p 

w
ith

 r
el

6 
ve

rs
us

 u
nb

ou
nd

ed

0.1

1.0

10.0

100.0

(b) Unbounded learning

Fig. 3. Graph comparing the best strategy (relevance-bounded k = 6) against other
strategies

Nodes inc. means what factor additional nodes the strategy needs on those
instances. The smaller the number6, the less propagation is lost as a result
of forgetting.

Speedup means speedup factor, e.g. speedup factor of 2 means that the strategy
takes half the time to solve the all instances together. Note that because only
instances completed by both are included, there are no timeouts in the total.

The aim is to maximise nodes per second, while keeping the node increase
as little as possible.

Analysis of results In these results, most of the strategies for forgetting clauses
improve over unbounded learning (none.undefined in Table 3) in terms of both
instances solved and overall time. There is an overall increase in the number
of instances solved: provided that the increased node rate compensates for the
increase in the number of nodes searched, there will be a net win. There is an
apparent paradox because for some strategies that beat unbounded learning,
e.g. size.2, the number of nodes increases more than the node rate in the “search
measures” section. However this is not a problem, because “beauty contest” is
based on all instances, whereas “search measures” is based only on instances that
didn’t timeout. Hence the paradox is because for these strategies, the instances
that timed out were the most improved in terms of nodes and node rate. This
makes sense when the instances that run the longest with unbounded learning
are the most encumbered by useless clauses.

These results are interesting because contrary to [16], relevance- and size-
bounded learning work well for certain choices of k. However, the results in this
paper were based on a larger set of benchmarks and a larger range of parame-
ters were tried. Also, different implementation decisions in our solver will result

6 constraint forgetting could occasionally lead to less search, as in backjumping [21],
so a number under 1 is possible in principle

12



Strategy Beauty contest Search measures
Instances Time 1st Q NPS Median NPS 3st Q NPS Instances Nodes inc. Speedup

stock.undefined 1667 248598.9 403.9 1353.0 10390.0 1312 129.6 6.7
relevance.6 1641 278203.7 205.3 502.4 1257.0 1336 2.4 4.2
relevance.5 1639 277357.3 217.6 541.6 1433.0 1336 2.8 4.7
relevance.4 1639 280652.1 222.5 533.4 1549.0 1333 3.6 4.3
relevance.7 1637 278973.3 201.7 482.9 1184.0 1336 1.9 4.4
size.10 1637 280804.7 196.7 534.4 1225.0 1336 4.1 5.1
relevance.10 1636 279244.4 178.1 454.1 1021.0 1335 1.6 5.2
relevance.3 1635 280366.6 242.1 566.2 1728.0 1336 5.5 3.4
size.8 1635 281008.0 214.6 566.2 1383.0 1335 5.2 4.5
size.5 1634 283213.5 235.9 595.7 1574.0 1335 7.5 3.9
relevance.14 1631 281037.3 141.7 409.5 874.6 1334 1.3 5.6
size.12 1631 282370.3 187.6 504.2 1143.0 1335 2.1 5.5
size.13 1631 282911.4 180.1 485.7 1081.0 1335 1.8 5.5
size.14 1631 283324.7 180.1 469.2 1044.0 1335 1.6 5.7
relevance.15 1629 282680.8 136.6 404.9 865.1 1335 1.3 5.9
size.9 1629 283146.9 205.9 541.2 1298.0 1334 4.5 5.0
size.11 1629 283882.0 193.7 516.0 1170.0 1333 3.0 5.3
relevance.16 1629 284854.4 134.5 406.7 860.9 1335 1.3 5.6
size.15 1628 287587.7 176.5 463.9 1007.0 1333 1.7 4.7
relevance.13 1627 281439.7 155.0 427.0 928.2 1335 1.4 5.3
relevance.2 1625 287833.7 250.6 580.3 2006.0 1329 61.3 3.2
relevance.12 1623 284866.5 159.0 420.5 928.9 1334 1.4 5.3
size.2 1621 289421.7 257.4 604.3 2088.0 1327 21.6 3.7
relevance.17 1620 288246.0 126.1 402.2 830.4 1335 1.3 5.1
size.20 1619 295401.9 155.1 413.9 907.9 1335 1.3 4.9
relevance.20 1618 293226.9 119.2 361.1 783.1 1334 1.2 5.3
size.1 1616 294566.6 262.4 611.1 2192.0 1323 61.6 3.1
mostrecent.1 1600 302325.7 227.2 544.0 2102.0 1319 65.8 3.1
mostrecent.2 1600 305267.5 206.9 500.7 2008.0 1323 37.0 2.8
mostrecent.10 1569 326114.8 155.6 381.5 1683.0 1323 34.8 2.6
relevance.30 1555 333292.2 98.4 255.6 686.2 1335 1.2 4.1
size.30 1554 330743.5 124.0 359.9 786.2 1335 1.2 4.2
minisat.1.1 1517 349391.3 112.9 278.1 1164.0 1326 8.0 2.1
relevance.40 1501 360096.1 70.5 166.2 635.5 1335 1.1 3.3
size.40 1498 354322.2 108.1 260.1 720.8 1334 1.1 3.9
mostrecent.100 1475 386555.2 77.2 217.8 1002.0 1326 6.1 2.2
minisat.201.501 1440 410767.3 60.8 173.3 810.8 1321 2.0 2.0
minisat.201.1001 1439 411044.4 60.9 170.6 800.4 1321 2.0 2.0
minisat.201.1 1438 410130.1 60.9 174.2 805.6 1321 2.0 2.1
minisat.401.501 1419 431958.5 46.4 152.4 698.8 1319 1.8 1.9
minisat.401.1001 1417 438939.3 45.6 146.5 676.0 1320 1.8 1.7
minisat.401.1 1413 444863.3 43.8 143.5 660.1 1319 1.8 1.6
relevance.100 1404 406542.4 31.4 99.2 564.3 1330 1.0 2.0
size.100 1397 406529.6 40.5 110.5 581.3 1330 1.1 1.9
minisat.601.1001 1373 500036.1 36.8 127.9 586.7 1319 1.6 1.4
minisat.601.501 1371 502484.1 36.1 121.2 583.9 1318 1.5 1.4
mostrecent.1000 1371 559058.3 31.6 106.3 566.1 1330 1.3 1.6
minisat.601.1 1367 510004.5 35.8 126.0 581.4 1316 1.4 1.5
minisat.1.1001 1344 440553.2 22.7 100.7 585.6 1322 3.0 0.9
none.undefined 1343 440552.2 22.2 76.4 510.0 1343 1.0 1.0
minisat.1.501 1343 442209.0 22.6 97.6 574.2 1321 3.0 0.9

Table 3. Comparison of various strategies for forgetting constraints

in a different time-space trade off. In fact, the best strategy solves 298 more
instances than unbounded learning in about 45 hours less runtime. However it
still trails stock minion by 26 instances and about 8 hours of runtime. In spite
of this, Figure 3(a) gives evidence that learning is still valuable and promising
in specific cases. Each point is an instance, with the x-axis the runtime taken

13



by stock Minion and the y-axis is stock runtime over rel.6 runtime; points above
the line are speedups and points below are slowdowns. Whilst many instances
are slowed down, speedups of up to 5 orders of magnitude are available on
some types of problem. Apart from the best strategy, various parameters for
relevance-bounded learning perform similarly to k = 6, as well as some size-
bounded learning parameters. It seems clear that they are significantly better
than unbounded learning, but not much different to each other.

The minisat strategy is not effective for any choice of parameters that we
tried. However there is reason to believe that a better implementation might
improve matters. Notice that the increase in nodes for the better strategies
(200.X) is relatively small. Using a profiler, we have discovered that the reason
for slowness is the amount of time taken to maintain and process the scores, and
to process the constraints periodically. Hence perhaps a better implementation
would turn out to perform competitively overall.

Now we will analyse the best forgetting strategy more carefully. Figure 3(b)
depicts the speedup on each instance for relevance-bounded k = 6 compared to
unbounded. It shows that most individual instances are speeded up, sometimes
by two orders of magnitude, although a few are slowed down by up to an order
of magnitude.

In conclusion, whether to use learning remains a modelling decision, where
big wins are sometimes available but sometimes it is better turned off.

5 Conclusions

In this paper, we have carried out the first detailed empirical study of the effec-
tiveness and costs of individual constraints in a CDCL solver. We found that,
typically, a very small minority of constraints contribute most of the propaga-
tion added by learning. While this is conventional wisdom, it has not previously
been the subject of empirical study. It is important to verify and make precise
folklore results, for until evidence exists and is published it is unverifiable and
acts as a barrier for entry to new researchers, who may not yet be aware of folk
knowledge.

Furthermore, these best constraints cost only a small fraction of the runtime
cost. Conversely, constraints that do no effective propagation can incur signifi-
cant time overheads. This contradicts conventional wisdom which suggests that
watched literal propagators have lower overheads when not in use. This result
shows why it is important to experiment on “known” results, because they are
not always entirely correct.

Together, these results explain why forgetting can work so well. It is obvious
that forgetting is a positive necessity due to memory constraints, but this re-
search shows that forgetting is not only necessary but also fortuituously effective
because of the disparity in propagation between constraints.

Finally, we performed an empirical survey of several simple techniques for
forgetting constraints in g-learning, and found that they are extremely effec-

14



tive in making the learning solver more robust and efficient, contrary to some
previously published evidence.

References

1. R. J. Bayardo and R. C. Schrag. Using CSP look-back techniques to solve real-
world SAT instances. pages 203–208. AAAI Press, 1997.

2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. Tech-
nical Report 08, Swedish Institute of Computer Science, 2005.

3. E. Ben-Sasson and J. Johannsen. Lower bounds for width-restricted clause learning
on small width formulas. In SAT, volume 6175 of LNCS, pages 16–29, 2010.

4. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In ECAI 04, pages 482–486, August 2004.

5. R. Dechter. Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition. Artif. Intell., 41(3):273–312, 1990.

6. N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, SAT, volume 2919 of LNCS, pages 502–518. Springer, 2003.

7. T. Feydy and P. J. Stuckey. Lazy clause generation reengineered. In I. P. Gent,
editor, CP, volume 5732 of LNCS, pages 352–366. Springer, 2009.

8. D. Frost and R. Dechter. Dead-end driven learning. In AAAI-94, volume 1, pages
294–300. AAAI Press, 1994.

9. I. Gent, I. Miguel, and N. Moore. Lazy explanations for constraint propagators.
In PADL 2010, number 5937 in LNCS, January 2010.

10. I. P. Gent, C. Jefferson, and I. Miguel. Minion: A fast scalable constraint solver.
In ECAI, pages 98–102, 2006.

11. M. L. Ginsberg. Dynamic backtracking. JAIR, 1:25–46, 1993.
12. E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT-solver. Discrete

Applied Mathematics, 155(12):1549 – 1561, 2007.
13. Intel. IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic Ar-

chitecture. Intel, Inc, 2000.
14. J. Johannsen. An exponential lower bound for width-restricted clause learning. In

O. Kullmann, editor, SAT, volume 5584 of LNCS, pages 128–140, 2010.
15. G. Katsirelos. Nogood Processing in CSPs. PhD thesis, University of Toronto, Jan

2009. http://hdl.handle.net/1807/16737.
16. G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In

CP, pages 873–877, 2003.
17. G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In M. M. Veloso and

S. Kambhampati, editors, AAAI, pages 390–396, 2005.
18. J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for

satisfiability. In International Conference on Computer-Aided Design, pages 220–
227, November 1996.

19. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In DAC 01, 2001.

20. O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy clause genera-
tion. Constraints, 14(3):357–391, 2009.

21. P. Prosser. Domain filtering can degrade intelligent backtracking search. In 13th
International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1993.

22. G. Richaud, H. Cambazard, and N. Jussien. Automata for nogood recording in
constraint satisfaction problems. In In CP06 Workshop on the Integration of SAT
and CP techniques, 2006.

15


