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Abstract Explanations are a technique for reasoning about constraint
propagation, which have been applied in many learning, backjumping
and user interaction algorithms. To date, explanations have been recorded
�eagerly� when the propagation happens, which leads to ine�cient use
of time and space, because many will never be used. In this paper we
show that it is possible and highly e�ective to calculate explanations
retrospectively when they are needed. To this end, we implement �lazy�
explanations in a state of the art learning framework. Experimental re-
sults con�rm the e�ectiveness of the technique: we achieve reduction in
the number of explanations calculated up to a factor of 200 and robust
reductions in overall solve time up to a factor of 2.

1 Introduction

Typically, CSP solvers use backtracking search to �nd solutions to constraint
problems. Usually search is supplemented by propagation; however, most forms
of propagation are incomplete because they cannot generally �nd solutions or
detect dead ends without the aid of search. Adding implied constraints to the
problem can reduce the incompleteness of propagation, by allowing more values
to be removed that cannot be in any solution.

This paper describes improvements to the technique of producing explana-

tions for what propagators do, which in turn improves Katsirelos' g-nogood
learning [15] and other algorithms that use explanations. Our main contribu-
tions are as follows:

� Introduce the idea of lazy explanations, which to reduce the overhead of
propagation in learning frameworks and other algorithms where explanations
are needed.

� Show how to implement the technique in a state of the art learning solver.
� Demonstrate improvement in CSP learning technology by up to a factor of
two decrease in overall solve time on a large set of benchmark problems,
as well as showing that number of explanations computed are universally
decreased up to a factor of 200 reduction.

We �nish by suggesting future directions for research.
For example, the constraint occurrence([v1, . . . , vn], 2, 4) ensures that exactly

4 of the variables v1, . . . , vn are assigned to 2. If v1, . . . , v4 are all assigned to



Algorithm 1 (left) standard search algorithm (right) search with learning

Standard-Search()
if ∀x ∈ Var, |d(x)| = 1

output solution
exit

choose an unset variable x to branch on
for v ∈ dom(x)

post branching constraint that x← v
propagate all constraints
if ¬∃x ∈ Var s.t. |d(x)| = 0

StandardSearch()
retract x← v

return

Learning-Search()
if ∀x ∈ Var, |d(x)| = 1

output solution
exit

choose an unset variable x to branch on
for v ∈ dom(x)

post branching constraint that x← v
propagate all constraints
if ∃ true g-nogood

analyseCon�ict()
retract x← v

else
target← Learning-Search()
retract x← v
if target 6= x

return target
propagate all constraints
if ∃ true g-nogood

target←analyseCon�ict()
return target

2, then 2 can be pruned from dom(v5) and dom(v6) and so on. Some algo-
rithms like CBJ [20] and g-learning [15] rely on explanations being available
for prunings; in the example the explanation for 2 being pruned from v5 is
{v1 ← 2, v2 ← 2, v3 ← 2, v4 ← 2} because these 4 assignments are su�cient for
the pruning. In numerous previous papers, such explanations have been built ea-
gerly at propagation time. In this paper we observe that many are never needed
and hence we describe how to evaluate them lazily and show the bene�t of doing
so.

2 Explanations and nogoods

The most notable and up to date algorithm that uses explanations is Katsire-
los et al's [15,16,17] g-nogood learning (g-learning). For this reason we will use
g-nogood learning as a framework in which to present our progress with expla-
nations. Unless alternative citation is given, all material in this review section is
based on that work. Towards the end of this section we give historical context
describing other explanation-based algorithms for the CSP.

We describe the g-learning scheme by contrasting it with a �standard� search
solver (Algorithm 1 (left), which can be characterised as d-way branching search
with propagation, variable ordering heuristics and chronological backtracking).
g-nogood learning is Algorithm 1 (right).



The �rst signi�cant way that learning di�ers from a standard solver is that
whenever a propagator assigns or prunes a value it must store a g-nogood as an
explanation for the action.

De�nition 1. A g-nogood is a set of assignments and prunings that cannot all

be true in any solution to the CSP.

If a propagator causes pruning x 8 a then it must store a g-nogood of the
form {x ← a, d1, . . . , dk} (where di are (dis-)assignments) such that d1, . . . , dk

becoming true is su�cient for the pruning. For example if the propagator for
x 6= y causes x 8 a because y ← a it will label the pruning with {x← a, y ← a}.
Here y ← a is an explanation for the pruning x← a, since if ever y ← a happened
again we could certainly prune a from x. Another way of looking at this is that
nogood {x← a, y ← a} is an implied constraint that the propagator subsumes,
hence if y ← a then the propagator must do x 8 a to ensure the constraint is
satis�ed.

g-nogoods must be stored for all assignments and prunings, except decision
assignments, which are labelled with NULL to denote that they are unconnected
with other decisions and inferences. Values pruned as a result of an assignment
to a variable are labelled by an �at most one value� (AMOV) nogood, e.g., if
w ← a then prunings w 8 k where k 6= a will be labelled by {w ← a, w ←
k}. Finally, an assignment y ← a caused by the elimination of all but one
value for y would be labelled by the �must have a value� (MHAV) nogood:
{y ← min(dom(y)), . . . , y ← max(dom(y))}. Note that all g-nogoods used as
explanations are implied constraints in the CSP.

A nogood can be propagated using unit propagation, i.e., when all but one of
the (dis-)assignments are true, make the remaining one false to ensure the CSP
can still be solved.

Next, learning di�ers from the standard solver because a depth is stored for
every assignment and pruning in the format d.s where d is the decision depth
and s is a sequence number within the depth, e.g., 2.0 for a decision at depth 2
and 0.7 for the seventh assignment or pruning at the root node (depth 0).

The �nal di�erence between learning and the standard solver is the way
that con�icts are handled. Learning assumes that the nogood store has been
preloaded with a MHAV g-nogood for every variable, so that domain wipeouts
(DWOs) are handled by a failure in the nogood store. Rather than backtracking,
a con�ict analysis procedure will run (analyseCon�icts()) and this is when the
g-nogood labels are exploited. The aim is to obtain a new g-nogood that is added
to the constraint store after backtracking, to prevent similar con�icts occuring
again. The algorithm used is to begin with the failed g-nogood and to repeatedly
resolve it with the deepest assignment or dis-assignment's nogood, so that the
(dis-)assignment is removed and replaced by its causes. This continues until a
termination condition is reached, usually the �rstUIP condition [26] that the
nogood contains exactly one (dis-)assignment from the depth at which failure
occurs. Now the solver backtracks and the g-nogood is added. The details of
this backtracking are beyond the scope of this paper, however the pseudocode



shows the analyseCon�ict() procedure returning a jump target which the solver
returns to before continuing search.

A more detailed discussion of the correctness and completeness of the g-
nogood learning algorithm is, unfortunately, beyond the scope of this paper,
however it is important to emphasise certain essential properties of the g-nogoods
used to label (dis-)assignments. Suppose a nogood {v ← a, d1, . . . , dk} labels
pruning v 8 a:

Property 1. At least one of d1, . . . , dk must have become true at the same deci-
sion depth as v 8 a occurred.

Remark 1. The property is true of GAC propagators, for example, but not
bounds consistency Z propagators [2]. In a proof of correctness of g-learning
it ensures that a �rstUIP cut exists.

Property 2. None of d1, . . . , dk may have a depth greater than or equal to v 8 a.

Remark 2. Ensures that causes must precede e�ects and avoids cycles in the
g-learning implication graph.

Section 4 describes an improvement to this algorithm: working out g-nogoods
lazily as they are needed, instead of eagerly as the propagations are done. As
we will show empirically in Section 5, many nogoods are never needed in the
process of building implied constraints.

We now review earlier research involving learning and/or explanations, to
show that explanations are common in CSP algorithms and to convince the
reader that lazy explanations are a new idea. The earliest CP-speci�c work was
by Frost and Dechter [5,4] on value- and graph-based learning; and jump-back
learning. Value- and graph-based begin with the complete failing instantiation
(which is a nogood) and remove assignments that are not needed for it to be
a nogood. A precomputed table is used to establish if a value is compatible
with all values in another variable, rather than explanations. The jump-back
scheme piggy-backs on con�ict-directed backjumping (CBJ) [20,21]. CBJ col-
lects explanations eagerly so it can later work out the reasons for failures. Gins-
berg's dynamic backtracking [10] builds �eliminating explanations� eagerly to
provide knowledge of which assignments were the cause of inconsistent values in
other variables. Schiex et al. [24] describe how to build and use generic nogoods
that are not made by the propagator. Jussein et al. [23,12,13] described how to
produce explanations (consisting of assignments only) for global constraints for
various purposes including integrating MAC and dynamic backtracking, user in-
teraction and learning constraints. They were produced eagerly by propagators.
Cambazard et al. used eagerly built explanations for variable and value ordering
heuristics. G-learning is a signi�cant improvement on previous learning schemes
as it makes the insight that g-nogoods, i.e., nogoods containing dis-assignments
as well as assignments, are far superior in terms of compactness and propagation
power.



3 Lazy Versus Eager Learning

We will now give an description of the execution of an eager g-nogood learning
CSP solver, and contrast its operation with that of our proposed lazy approach.
The CSP we will use has:

� variables v, w, x, y and z, each with a starting domain of {1, . . . , 5}; and
� constraints alldi�(v, w, x, y, z) and x = z.

This CSP is unsatis�able, as it is easy to prove by searching using the variable
ordering [x, z, . . .]. Nevertheless1 we will use the variable ordering [v, w, x, y, z]
to demonstrate thrashing being avoided using learning and illustrate the main
techniques.

The following paragraph is shown in detail in Table 1. Observe that no GAC
propagation is possible at the root node. The search process begins by making
the assignment v ← 1. This causes the remaining values 2, . . . , 5 to be removed
from v in the normal way. At this point standard eager g-learning will store a
nogood for each pruning (speci�cally the AMOV nogood v ← 1, v ← i for each
i ∈ 1, . . . , 5). In contrast, lazy learning stores just a pointer to the responsible
constraint (AMOV). Next, alldi� removes the value 1 from the domains of all
the other variables in its scope (w, x, y and z). Again g-nogood labels will
be stored for each, whereas lazy learning stores just a pointer to alldi�. Now
propagation cannot progress any further. Another decision to assign w ← 2 is
made; similar propagation results. The next decision to assign x ← 3 causes
x = z to propagate, setting z ← 3. However alldi� has also forced x 8 3. Hence
a contradiction has been derived, because z cannot be both 3 and not 3.

A conventional solver now backtracks and takes a right branch, whereas our
learning solver backtracks and learns a new constraint. The constraint is intended
to stop the same con�ict from happening again, and in due course these learned
constraints can be combined to remove entire failing subtrees of the search tree.

Eager learning begins with the nogood {z 8 3, z ← 3}. This nogood can
be annotated by the depth at which each of the constraints became true: {z 8
3@3.4, z ← 3@3.5}. It is �rst resolved with the stored label for the deepest literal,
z ← 3 to obtain {z 8 3@3.4, x ← 3@3.0}. Now the g-nogood is resolved again,
this time with the label for z 8 3 to obtain {z ← 3@3.0}.

Using lazy explanations, the starting nogood and resolutions are identical but
lazy learning does not fetch nogood labels from storage. Rather, a polymorphic
function of the constraint is invoked with the (dis-)assignment as a parameter.
Based on the propagator's semantics a label can be built retrospectively. For
example, if the constraint alldi�([v, w, x, y, z]) is asked why it pruned 2 ∈ x then
it can easily work out that it was because w ← 2. Other cases are more complex
but we shall show in Section 4 that it is always possible and advantageous to be
lazy in this way.

1 bear in mind that it has been shown [15] that on some problems learning will provide
a superpolynomial speedup irrespective of the variable ordering used



CSP constraints: alldi�([v, w, x, y, z]), x = z

Depth Action Constraint Description g-nogood label

v ∈ {1, . . . , 5}, w ∈ {1, . . . , 5}, x ∈ {1, . . . , 5}, y ∈ {1, . . . , 5}, z ∈ {1, . . . , 5}
1.0 v ← 1 null search decision null

1.1 v 8 2 AMOV remove other value from decision variable {v ← 2, v ← 1}
1.2 v 8 3 AMOV � {v ← 3, v ← 1}
1.3 v 8 4 AMOV � {v ← 4, v ← 1}
1.4 v 8 5 AMOV � {v ← 5, v ← 1}
1.5 w 8 1 alldi� alldi� removes value that's already used {w ← 1, v ← 1}
1.6 x 8 1 alldi� � {x← 1, v ← 1}
1.7 y 8 1 alldi� � {y ← 1, v ← 1}
1.8 z 8 1 alldi� � {z ← 1, v ← 1}

v ∈ {1}, w ∈ {2, . . . , 5}, x ∈ {2, . . . , 5}, y ∈ {2, . . . , 5}, z ∈ {2, . . . , 5}
2.0 w ← 2 null search decision null

2.1 w 8 3 AMOV remove other value from decision variable {w ← 3, w ← 2}
2.2 w 8 4 AMOV � {w ← 4, w ← 2}
2.3 w 8 5 AMOV � {w ← 5, w ← 2}
2.4 x 8 2 alldi� alldi� removes value that's already used {x← 2, w ← 2}
2.5 y 8 2 alldi� � {y ← 2, w ← 2}
2.6 z 8 2 alldi� � {z ← 2, w ← 2}

v ∈ {1}, w ∈ {2}, x ∈ {3, 4, 5}, y ∈ {3, 4, 5}, z ∈ {3, 4, 5}
3.0 x← 3 null search decision null

3.1 x 8 4 AMOV remove other value from decision variable {x← 4, x← 3}
3.2 x 8 5 AMOV � {x← 5, x← 3}
3.3 y 8 3 alldi� alldi� removes value that's already used {y ← 3, x← 3}
3.4 z 8 3 alldi� � {z ← 3, x← 3}
3.5 z ← 3 x = z must assign z to same as x {z 8 3, x← 3}

con�ict, because 3 ∈ z is both assigned and pruned

v ∈ {1}, w ∈ {2}, x ∈ {3}, y ∈ {3, 4, 5}, z ∈ ∅
Table 1. Trace of learning algorithm, in the �g-nogood label� column the explanation
part is underlined

The nogood, however derived, can now be posted into the solver and it is
globally false, i.e., the nogood is false in all solutions to the CSP. Hence the �nal
action is to backtrack once to remove the incorrect branching decision, learn the
nogood and continue.

Lazy explanations are intended to reduce the amount of overhead that learn-
ing places on propagators. Previously techniques like learning generalised no-
goods and CBJ[20] required data to be collected during search giving reasons
for each pruning, however now we need only store a pointer to a piece of code
that is able to work out the reason retrospectively. This brings learning CP
solvers more in line with SAT solvers, which also need only store a single pointer
per propagation to enable learning [18].



4 Lazy learning

Conventionally a propagator will store a set of (dis-)assignments eagerly when-
ever a pruning is done. An alternative is to store only enough data to allow the
nogood to be reconstructed e�ciently later in the same branch of the search tree,
this we call laziness.

4.1 Explanations for clauses

If clause (x 8 a ∨ d1 ∨ . . . ∨ dk) causes pruning x 8 a, it is su�cient to note
only which constraint did it, i.e., to store a pointer to the clause. We know that
the pruning was by unit propagation[3] and at that point all of d1, . . . , dk were
false. Hence the nogood is {x← a} ∪ {¬d1, . . . ,¬dk} or informally the negative
of the clause itself.

This form of lazy learning is very familiar because it is what SAT solvers do
[18]. It is natural for SAT solvers to do lazy learning, but we will show that it is
also possible and advantageous for CP solvers.

4.2 Explanations for inequalities

Suppose that constraint x < y causes pruning x 8 a; it is su�cient to store
only a pointer to the constraint x < y to later reconstruct the nogood label. a is
pruned if and only if all values in y greater than a are removed. Hence nogood
label {x ← a} ∪ {y 8 a + 1, . . . , y 8 max(initdom(y)} can be computed when
required.

The ability to create nogoods lazily is only intended to be available later in
the same branch, because later in the branch we can implement domain tests in
O(1) time for earlier states, as we will now illustrate by showing how to produce
lazy explanations for the table propagator.

4.3 Explanations for table

Assume we are using a watched literals (WL) [6] implementation of table where
tuples are stored in an array of tries, one per variable, so that all tuples involving
a particular variable and value (varval) are readily accessible, introduced by
[7] and illustrated in Figure 1. For example, the trie at the top of Figure 1
could represent every tuple involving d = 1, meaning that the set of tuples is
{(d = 1, a = 0, b = 1, c = 1), (d = 1, a = 0, b = 2, c = 2), (d = 1, a = 0, b =
2, c = 3), (d = 1, a = 2, b = 2, c = 1), (d = 1, a = 2, b = 2, c = 4), (d = 1, a =
2, b = 3, c = 5)}. The propagator works by making sure that each varval is
supported by at least one tuple, if any component of that tuple is lost either a
new supporting tuple can be found in the trie, or the varval is pruned.

Such a constraint will prune a varval if and only if every tuple involving
that varval has has at least one component pruned. Hence an explanation for
the pruning is a set that includes at least one pruned component per tuple. We
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Figure 1. (top) Trie with pruned values shown as triangles, greyed nodes are those
included in the nogood and nodes visited in the traversal are bold. (bottom) Same trie
but values pruned between the original pruning (at depth 3.9) and the nogood being
produced are in double triangles. Pruning depths are shown: permissible prunings have
depth < 3.9, disallowed prunings have depth > 3.9.



demonstrate explanations for GAC-schema using Katsirelos' naïve scheme [15]
which was arguably the most successful of the techniques he tried. The algorithm
simply picks any pruned component from each tuple.

This can easily be implemented with tries: perform an inorder traverse of the
trie but whenever a pruned node is visited add the node to the set and don't
recurse any further. Each pruning covers all the tuples beneath the point in the
tree when it was added. The top of Figure 1 illustrates this process.

Lazily, we are presented with the same trie, but with at least as many pruned
values. We cannot be sure of satisfying Property 2 by applying the same traversal,
for later additional prunings could be wrongly used when they could have had no
e�ect on the earlier propagation. Instead, we adapt the algorithm to add to the
set only values that were pruned at that time; this we achieve by inspecting the
depth of the pruning. Such a situation is illustrated in the bottom of Figure 1
where we choose not to use the double lined triangular nodes where the original
algorithm would have done.

A nogood could be built eagerly with no increase in asymptotic time com-
plexity since the WL propagators must traverse the entire tree anyway prior
to doing any pruning. By being lazy we incur at most one extra trie traversal
per nogood because we might have to repeat the traversal when the nogood is
requested. However fewer traversals will be needed overall if fewer than half of
the explanations are needed.

The previous examples illustrate that lazy nogood generation can be just
as e�cient as eager evaluation, but with the additional advantage that it may
never become necessary. The next example will show that lazy explanations
can be e�cient even for complex propagators like GAC alldi�. And, of course,
explanations can be still done eagerly with no loss of e�ciency when it is hard
to work out nogoods retrospectively for a particular constraint.

4.4 Explanations for alldi�erent

The alldi�erent constraint (see [8] for a review) ensures that the variables in
its scope take distinct values. For example, consider the variable value graph
in Figure 2, where we have 4 variables and 5 values. The current domains are
illustrated by having an edge from variable v to value a whenever a ∈ dom(v).

Régin's GAC alldi�erent propagation algorithm [22] �rst creates a maximum
matching (size 4 matching shown with bold lines in the �gure) in O(r1.5d) time
and then uses Tarjan's algorithm to �nd Hall sets in O(rd) time. Hall sets are
sets of k variables such that the union of their current domains has size k (we
refer to this union as the combined domain). Clearly the variables in a Hall set
must consume the combined domain and so the values can be removed from the
domains of all other variables. In the �gure an unsupported value 2 ∈ dom(z)
is shown with a dotted line, it is unsupported because 2 is used by the Hall set
{w, x, y}.

To enable explanations to be produced later, a pointer to the constraint is
stored for each pruning. Later, an explanation can be produced as follows:
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Figure 2. (left)Variable value graph at time of original pruning (right) Same graph at
time of explanation

1. The alldi� propagator maintains a maximum matching as domains are nar-
rowed. The most recent complete matching would have been valid when the
pruning was done, since edges are only ever removed as domains are nar-
rowed. Notice that the matching in Figure 2 (right) is also valid for Figure
2 (left).

2. Find the Hall set that consumed the pruned value earlier, by running Tar-
jan's algorithm, but using earlier domain state reconstructed by inspecting
pruning depths, as described in Subsection 4.3.

3. The explanation is the conjunction of all the prunings from the Hall set
(except the values in the combined domain), since the removal of these values
ensured that the Hall set HS's combined domains consisted of |HS| values.
This operation is O(rd).

Hence, in the example of Figure 2 the explanation is {w 8 4, w 8 5, x 8
4, x 8 5, y 8 4, y 8 5}. These prunings are enough to ensure only 3 values
remain in {x, y, z}'s combined domain.

Contrast this with eager explanations, where the Hall set is known when the
pruning is done, and the explanation can then be built in O(rd) time. Hence,
when we consider prunings individually, lazy learning's worst case time com-
plexity of O(rd) matches the eager approach, with the additional advantage
that some of them will never be built. Note that there is an additional advan-
tage for eagerness, which is that the same explanation could be used for several
values and hence built only once; lazily it may be built several times. This means
laziness is theoretically worse if the number is prunings per propagation is not
bounded by a constant. It is not clear which variant will win in practice.



4.5 Explanations for arbitrary propagators

We have now described how to apply the lazy approach to a variety of constraints.
Katsirelos' GAC-Generic-Nogood [15] is a procedure for �nding g-nogood labels
for an arbitrary propagator with unknown implementation: the explanation of a
(dis-)assignment is just the set of prunings from other variables in the scope of
the constraint. It can easily be evaluated lazily by including only prunings that
were made before the propagation happened, a similar trick to Sections 4.3 and
4.4. In this way we can be sure that a generic nogood can always be produced
lazily, although by specialising for each propagator as described above we will
obtain smaller nogoods and/or reduce the time taken to compute them.

5 Experiments

We evaluated the e�ectiveness of lazy explanations in a g-learning solver.

5.1 Implementation

Our g-learning solver is based on minion public repository version 18852. We
make implementation decisions so that as far as possible we are changing only
the method used for generating nogoods, compared to the experiments in [15].
Hence we choose to implement our solver with d-way branching, dom/wdeg
variable ordering [1] and far backtracking as described in [15]. Our solver tries
to use a �rstUIP cut, but in case the �rstUIP doesn't propagate the �rstDecision
cut is tried next and must cause a pruning. We believe that Katsirelos' solver
uses �rstDecision once a loop is detected but the details are unpublished [14].
Finally node counts are not directly comparable because we do not know how
they were calculated.

Our learning implementation stores (dis-)assignment depths in an array. To
produce explanations we store an small object with a polymorphic function that
produces an explanation. For eager, the stored nogood is returned immediately;
for lazy, the function implements an algorithm to calculate the nogood. In our
implementation nogoods are not memoized, hence they may be calculated mul-
tiple times. Learned clauses are propagated by the 2-watch literal scheme [19].

5.2 Benchmarks

We used a large and varied set of benchmarks, consisting of:

� crossword problems,
� antichain problem,
� peg solitaire instances, and
� every extensional instance from the 2006 CSP Solver Competition.

2 svn co https://minion.svn.sourceforge.net/svnroot/minion/trunk minion



With the exception of antichain, these were all produced by Tailor [9] using
instances from the CSPXML repository3 and those described in [11]. We chose
these instances because we have to date implemented lazy explanations for con-
straints =, 6=, <, literal, not literal, disjunction (of arbitrary constraint), table
and negative table.

5.3 Experimental methodology

Each of the 1418 instances was executed three times with a 10 minute timeout,
on a Red Hat Linux server kernel 2.6.18-92.1.13.el5xen with 8 Intel Xeon E5430
cores at 2.66 GHz. Each run was identical, and we use the minimum time for each
in our analysis, in order to approximate the run time in perfect conditions (i.e.,
with no system noise) as closely as possible. Each instance was run on its own
core, each with 996MB of memory. Minion was compiled statically (-static)
using g++ with �ag -O3.

5.4 Results - lazy learning vs. no learning

First we will brie�y give some results comparing lazy learning with no learning
at all, i.e., ordinary minion with d-way branching. Figure 3 shows that learning
is e�ective on certain classes of benchmark, but more work remains to be done to
make it robust across a larger range of benchmarks. Some of these results di�er
from Katsirelos' [15]. This is because minion is a very highly optimised solver
(it explores a much greater number of nodes per second) and hence in order to
compensate for the overhead of learning a larger reduction in nodes is required.
However, we do not know of faster solution times for peg solitaire [11] and other
classes achieve speedups of up to 100x.

5.5 Results - lazy learning vs. eager learning

Now we turn our attentions to the subject of this paper: are lazy explanations
e�ective in reducing the runtime of the g-learning framework? The answer is yes.
Figure 4 shows an overall reduction in number of explanations generated in all
cases, up to a factor of 200 reduction. This proves that the rationale behind lazy
learning is correct�many explanations are never used and hence we should try
to avoid calculating them.

Next we exhibit Figure 5, which con�rms that, on the whole, time is saved
by using lazy explanations: lazy explanations can double our solver's search
speed, without a�ecting the search tree traversed signi�cantly4. Note that this
speedup is the whole solver, not just the learning engine. In other solvers where
learning is less of an overhead the speed increase may be less, but we have been
careful to optimise both lazy and eager learning in our solver. We carried out
a non-parametric t-test (Wilcoxon signed ranked test [25]) and found that the
di�erence between lazy and eager is statistically signi�cant at the 1% level.

3 http://www.cril.univ-artois.fr/ lecoutre/research/benchmarks/benchmarks.html
4 sometimes lazy and eager make di�erent choices between suitable nogoods
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Figure 3. Scatterplot showing runtime comparison for minion versus minion-lazy. Each
point is a result for a single instance. The x-axis is the solve time (i.e., excluding set up
time which is identical for both). The y-axis gives the speedup from using minion-lazy
instead of minion. A ratio of 1 means they were the same, above 1 means minion-lazy
was faster and below 1 that minion was faster. Subsequent graphs are the same style.

Lazy learning is detrimental to a small number of instances. Note that the
SAT instances which are below the line are probably noise, because their runtime
is very small and furthermore for SAT clauses lazy and eager learning are the
same. The quasigroup instances below the line are interesting: Figure 4 shows
that most explanations are eventually used in the learning process for these
instances. The increase is search time re�ects the fact that lazy explanations for
the table and negative table constraints require additional traversals of the trie
data structure compared with eagerness (see Section 4.3).

6 Conclusions and Future Work

We have introduced lazy explanations, in which nogoods are computed as needed,
rather than stored eagerly. This approach conveys the twin advantages, con-
�rmed experimentally, of reducing storage requirements and avoiding wasted
e�ort for nogoods that are never used.

In future work, we will create lazy explainers for constraints other than those
featured herein. A further important item of future work is to investigate for
speci�c propagators whether laziness is advantageous.
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Figure 4. Scatterplot showing comparison of number of explanations produced by
minion-lazy versus minion-eager, fewer for instances above the line.
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Figure 5. Scatterplot comparing nodes per second for minion-lazy versus minion-eager,
more for instances above the line.
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