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Abstract Explanations are a technique for reasoning about constraint
propagation, which have been applied in many learning, backjumping
and user-interaction algorithms for constraint programming. To date ex-
planations for constraints have usually been recorded �eagerly� when con-
straint propagation happens, which leads to ine�cient use of time and
space, because many will never be used. In this paper we show that it
is possible and highly e�ective to calculate explanations retrospectively
when they are needed. To this end, we implement �lazy� explanations
in a state of the art learning framework. Experimental results con�rm
the e�ectiveness of the technique: we achieve reduction in the number of
explanations calculated up to a factor of 200 and reductions in overall
solve time up to a factor of 5.
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1 Introduction

Constraints are a powerful and natural means of knowledge representation and
inference in many areas of industry and academia. Consider, for example, the
production of a university timetable. This problem's constraints include: the
maths lecture theatre has a capacity of 100 students; art history lectures require
a venue with a slide projector; and no student can attend two lectures simulta-
neously. Constraint solving of a combinatorial problem proceeds in two phases.
First, the problem is modelled as a set of decision variables, and a set of con-
straints on those variables that a solution must satisfy. In our example one might
have two decision variables per lecture, representing the time and the venue. For
each class of students, the time variables of the lectures they attend may have
an alldi� constraint on them to ensure that the class is not timetabled to be
in two places at once. The second phase consists of using a constraint solver
to search for solutions: assignments of values to decision variables satisfying all
constraints.

Typically, constraint solvers use backtracking search supplemented by con-
straint propagation, which is a form of inference. Propagation usually involves
removing domain values that cannot be involved in any solution. This can dra-
matically reduce the space of assignments searched. Search can be further im-
proved by the use of constraint learning where previously unknown constraints
are uncovered during search and used to speed up search subsequently. Discov-
ering these new constraints requires reasoning about why propagation removes
values, which is why we need explanations for what it does.

This paper describes improvements to existing techniques for producing ex-
planations, which in turn improves Katsirelos' g-nogood learning [15, 16, 17]
and other CSP algorithms that use explanations. Our main contributions are as
follows:



� To introduce the idea of lazy explanations for constraints, similar to a suc-
cessful idea from satis�ability modulo theories (SMT) solvers. To our knowl-
edge this technique has never been applied to the CSP before. The technique
reduces the time and space overhead of propagation by calculating explana-
tions only when they are needed.

� To show how to implement the technique in a state of the art learning solver.
� To describe for the �rst time how to produce explanations for various com-
mon global constraints lazily (i.e., only when needed). Currently the SMT
community are incorporating constraint propagation algorithms into their
tools (see SAT 09 invited talk [22]), so these new algorithms can be incorpo-
rated into SMT solvers as well as CSP solvers. We also prove that laziness can
be implemented for any propagator by providing a lazy generic explanation
algorithm.

� To demonstrate improvement in CSP learning technology by up to a factor
of two decrease in overall solve time on a large set of benchmark problems,
as well as showing that number of explanations computed are universally
decreased up to a factor of 200.

We �nish by describing related work and suggesting future directions for
research.

2 Background: Constraints, search and explanations

It is necessary for us to provide some background describing the constraint sat-
isfaction problem (CSP), CSP solvers and explanations in this section.

2.1 CSP and CSP solvers

A CSP is a triple (V,D, C) where V is the sequence (v1, . . . , vn) of variables, D
is the sequence (d1, . . . , dn) of �nite domains, where ∀i, di ⊂ Z, and C is the
set {c1, . . . , ce} of constraints. Each constraint ci is over a subset {vc1 , . . . , vck

}
of the variables (the constraint's scope) and the allowed combinations of values
are speci�ed by a relation Ri ⊆ dc1 × . . . × dck

. However, usually a constraint
will be speci�ed in intension, i.e., the relation is implicit in the de�nition of the
constraint. When a constraint c in included in C, we say that c is posted.

Usually, the aim is to �nd one or more solutions to the CSP, each of which
is an assignment to all of the variables from their respective domains, such that
the values in the scope of each constraint form an allowed combination (satisfy
the constraint).

Our reference search solver in this paper can be characterised as depth �rst
search with propagation, ordering heuristics and chronological backtracking.
Hence the solver repeatedly assigns a variable vi to a value v ∈ di, we call these
branching decisions decision assignments. After each value is assigned, constraint
propagation is carried out, whereby values that cannot be in any solution are
removed:

Example 1. If constraint v2 6= v3 is posted and v2 is assigned to 3 then propa-
gation will remove 3 from d3, since assigning 3 to v3 will result in failure.



The propagation procedure is repeated to a �xpoint. Now provided that
no inconsistency has been discovered (i.e., a domain with no possible values)
search will proceed to assign another variable, otherwise search will backtrack by
retracting the most recent decision and continuing. Once a complete assignment
is reached a solution has been found.

We use the notation vi ← a as a shorthand for �vi assigned to a�, i.e., all
other values are removed from di. Similarly vi 8 a for a pruning (alternatively,
disassignment) where domain di loses value a.

A propagator is an implementation of a particular constraint; roughly, it must
not prune any value that can be part of a satisfying assignment for the constraint.
A propagator usually prunes according to a de�ned level of consistency. The
most common one is generalised arc consistency (GAC) [19]. GAC propagation
ensures that for every variable vi and value a ∈ di there is an assignment to the
scope of the constraint that satis�es the constraint and assigns vi ← a. If the
variable/value pair cannot be part of such an assignment it is pruned.

2.2 Explanations

One of the most notable and up to date CSP algorithms that uses explanations
is Katsirelos et al 's [15, 16, 17] g-nogood learning (g-learning). For this reason
we will use g-learning as a framework in which to present our progress with
explanations. Unless alternative citation is given, all material in this review
section is based on that work.

We describe the g-learning scheme by contrasting it with the standard solver
described in the previous section. The �rst signi�cant way that a learning solver
di�ers is that whenever a propagator assigns or prunes a value it must store an
explanation for the action:

De�nition 1. An explanation for pruning x 8 a is a set of assignments and
disassignments that are su�cient for a propagator to infer x 8 a. Similarly an
explanation for assignment y ← b is a set of (dis-)assignments that are su�cient
for a propagator to infer that y ← b.

Example 2. Suppose that a propagator x 6= y is informed that x ← a, hence it
determines that y cannot also be assigned to a. The propagator will carry out
pruning y 8 a. The explanation for y 8 a is {x ← a}, intuitively because the
latter set is su�cient for the propagator to carry out the former pruning, i.e.,
y 8 a because x← a.

Explanations must be stored for all assignments and prunings, except decision
assignments, which are labelled with NULL to denote that they are unconnected
with other decisions and inferences. To ensure that all (dis-)assignments are
labelled correctly, the solver will also generate explanations for cases where (i) a
variable is set because only one value remains and (ii) a value is pruned because
the variable has been assigned to a di�erent value.

Next, learning di�ers from the standard solver because a depth is stored for
every assignment and pruning in the format d.s where d is the decision depth
(i.e., how many decision assignments made so far?), and s is a sequence number
within the decision depth (i.e., i for the ith (dis-)assignment, starting at 0).
For example, 2.0 for the decision assignment at depth 2 and 0.7 for the eighth
(dis-)assignment at the root node (depth 0).



The �nal di�erence between learning and the standard solver is the way that
con�icts are handled. Rather than backtracking, a con�ict analysis procedure will
run and this is when the explanations are exploited. The aim is to obtain a new
constraint that is added to the constraint store after backtracking, to prevent
similar con�icts occuring again. The analysis procedure used in g-learning is
quite similar to that used in con�ict clause learning SAT solvers (e.g. [32]). That
is, starting with a clause (i.e., disjunction of (dis-)assignments), selected (dis-
)assignments are replaced by their explanation until a suitable new clause is
derived. Finally the new clause is posted into the solver and search continues.
Search now avoids entering certain unnecessary branches of search because the
new clause boosts inference.

A more detailed discussion of the g-learning algorithm is, unfortunately, be-
yond the scope of this paper, however it is important to emphasise certain essen-
tial properties of the explanations used to label (dis-)assignments (see [23] for
equivalent properties used in SMT solvers). Suppose explanation {d1, . . . , dk}
labels pruning v 8 a:

Property 1. At least one of d1, . . . , dk must have become true at the same deci-
sion depth as v 8 a occurred.

Remark 1. Intuitively it means that once the (dis-)assignments in the explana-
tion become true, the pruning must be carried out at that decision depth. The
property is true of GAC propagators, for example, but not bounds consistency Z
propagators [3]. In a proof of correctness of g-learning it ensures that a �rstUIP
[32] cut exists.

Property 2. None of d1, . . . , dk may have a depth greater than or equal to v 8 a.

Remark 2. Ensures that causes must precede e�ects1.

Now we proceed to describe our new work: Section 3 introduces a way of
working out explanations for propagations lazily when they are needed, instead of
eagerly as the propagations are done. In Section 4 we show how to specialise this
for speci�c propagators. Finally in Section 5, we show empirically that laziness
saves time and space because many explanations stored eagerly are never used.

3 Lazy explanations

Conventionally a propagator will store a set of (dis-)assignments eagerly when-
ever a pruning is done. An alternative is to store only enough data to allow the
explanation to be reconstructed e�ciently later in the same branch of the search
tree, this we call laziness.

Speci�cally, when a propagator carries out a pruning (or assignment), it must
provide a data record, along with a pointer to a function that takes such an object
as a parameter2. The record and function are stored by the runtime system for
later retrieval. Later in search, when an explanation is requested by con�ict
analysis (or some other procedure), the function will be invoked on the record,
and it must return a valid explanation for the earlier pruning. In a g-learning

1 avoiding cycles in the g-learning implication graph[20, 15]
2 alternatively, objects with a polymorphic method could be used



framework, Properties 1 and 2 must also be satis�ed to ensure correctness. It is
likely that the function will access propagator state and variable domain state to
carry out this task, and it may perform arbitrary computation. Contrast this with
an explanation recorded eagerly: the propagator will calculate the explanation
at the time of pruning and it will be stored; later on it will be fetched from
storage.

In Section 4 we will describe lazy explanation functions for various useful
constraints. Of course, explanations can be still done eagerly with no loss of
e�ciency when it is hard or inconvenient to work out explanations retrospectively
for a particular constraint.

The ability to create explanations lazily is only intended to be available later
in the same branch, while the (dis-)assignment is still valid. This is because
domain information for earlier states in the same branch can be reconstructed,
and some lazy explainers described in Section 4 will make use of this information.

Since constraint solvers spend most of their time propagating, an overhead
at propagation-time is very damaging to the solver as a whole. This is the reason
why computing and storing the explanation lazily is attractive. Hence, we seek to
store the minimum amount of data that will su�ce to calculate the explanation
e�ciently later.

We now describe the execution of a solver implementing lazy explanations:

Example 3. Suppose that our CSP consists of variables v, w, x, y and z, each with
domain {1, . . . , 5}; and the set of constraints includes alldi�(v, w, x, y, z), mean-
ing that all the variables must take di�erent values. Suppose that the domains
of variables v and w are reduced to {1, 2}, then the alldi� is able to propagate: v
and w have the possibility of values 1 and 2 between them, and since each needs
a distinct value both are required. Hence 1 and 2 should be removed from the
domains of x, y and z. An eager solver will compute and store the explanation
{v 8 3, v 8 4, v 8 5, w 8 3, w 8 4, w 8 5} for each pruning. A lazy solver
will instead store only a function pointer and a small object containing a pointer
to the alldi� propagator; in this way the e�ort of producing an explanation is
delayed and may never need to happen. Suppose that, later in search, the prun-
ing x 8 1 is involved in a domain wipeout. The con�ict analysis procedure may
request an explanation for the pruning. At this stage an eager solver will fetch it
from storage. A lazy solver will instead invoke the stored function on the small
object stored earlier, which will execute code to retrospectively compute an ex-
planation (this procedure is described in Section 4.4). The clause the con�ict
analysis procedure produces, however the explanations are derived, can now be
posted into the solver.

Lazy explanations are intended to reduce the overhead that learning places on
propagators. To our knowledge, this is the �rst application of lazy explanations
to a CP solver. As we shall say in more detail in Section 6, at least one SAT
modulo theories (SMT) solver uses a similar technique, whereby inference engines
for specialised theories such as integer linear arithmetic guarantee to provide an
explanation for an inference lazily when it is requested. Also a similar technique
has been used before in a solver for jobshop problems [31]. Previously techniques
like g-learning and CBJ [25] required potentially a lot of data to be collected
during search, however now in many cases we need only store two pointers. This



brings CP solvers more in line with SAT solvers, which need only store a single
pointer per propagation to enable learning [20].

4 Lazy explanations for constraint propagators

In this section we describe how speci�c constraint propagators can be made to
produce lazy explanations, speci�cally, what they need to store at propagation-
time and what they need to do later if and when the explanation is requested.
We include propagators for clauses, less than, table/extensional and alldi� con-
straints.

Between them, these propagators range from the simplest (clause) to among
the most complex (alldi�). This sample of the available constraints serves to
expose the core ideas needed to integrate lazy learning into other propagators.

Finally we describe a generic procedure that will work for an arbitrary con-
straint, to prove that a propagator can always be lazy, whatever constraint it
implements.

4.1 Explanations for clauses

If clause a ← 1 ∨ b ← 2 ∨ c ← 3 ∨ d ← 4 causes assignment d ← 4, in order to
calculate an explanation later it is su�cient to note only which constraint did
it, i.e., to store a pointer to the clause. Before explaining why, we need to de�ne
unit propagation which is the consistency level used to propagate clauses:

De�nition 2. When all but one (dis-)assignment ei in a clause e1∨e2∨ . . .∨er

are false, unit propagation will set ei to be true.

Example 4. Suppose that a 8 1, b 8 2 and c 8 3, then the propagator for
the clause a ← 1 ∨ b ← 2 ∨ c ← 3 ∨ d ← 4 will set d ← 4, as the remaining
disjuncts are all false. This is necessary because at least one disjunct must be
true to satisfy the clause.

Now suppose later we are asked to generate an explanation lazily: we know
that the pruning was by unit propagation and can use this fact to infer that all
of a ← 1, b ← 2 and c ← 3 were false at that point. Hence the explanation is
{a← 1, b← 2, c← 3} or informally the negative of the clause itself with d← 4
removed.

This form of lazy learning is very familiar because it is what SAT solvers do
[20]. It is natural for SAT solvers to do lazy learning, but we will show that it is
also possible and advantageous for CP solvers.

4.2 Explanations for inequalities

Suppose that constraint v1 < v2 causes pruning v1 8 a; it is su�cient to store
only a pointer to the constraint v1 < v2 to later reconstruct the explanation. a is
pruned if and only if all values in v2 greater than a are removed, since these are
the potential supports for a. Hence explanation {v2 8 a+1, . . . , v2 8 max(d2)}
can be computed when required.

In the next example it will be necessary to reconstruct the domain state at
the time when the pruning was made, and as we will show these operations can
be implemented in O(1) time with the aid of the stored (dis-)assignment depths.
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Figure 1. (top) Trie with pruned values shown as triangles, greyed nodes are those
included in the explanation and nodes visited in the traversal are bold. (bottom) Same
trie but values pruned between the original pruning (at depth 3.9) and the explanation
being produced are in double triangles. Pruning depths are shown: permissible prunings
have depth < 3.9, disallowed prunings have depth > 3.9.

4.3 Explanations for table

The extensional or �table� constraint is an important part of a constraint library.
The user lists the allowed tuples. Hence it can mimic any other constraint, or
be used to express an arbitrary relation in a straightforward way where in many
cases it would be awkward to express otherwise. For example the relation �mar-
ried to�, {(tom, sally), (bob, marie), (sean, jenny)}.

Assume we are using an implementation of table [7] where tuples are stored
as an array of tries, one per variable, so that all tuples involving a particular
variable and value (varval) are readily accessible, as illustrated in Figure 1. For
example, the trie at the top of Figure 1 represents every tuple involving d = 1,
meaning that the set of tuples is {(d = 1, a = 0, b = 1, c = 1), (d = 1, a = 0, b =
2, c = 2), (d = 1, a = 0, b = 2, c = 3), (d = 1, a = 2, b = 2, c = 1), (d = 1, a =
2, b = 2, c = 4), (d = 1, a = 2, b = 3, c = 5)}.

We say that a varval x = a is pruned when x 8 a. We say that a tuple is
valid when none of its component varvals are pruned. The propagator works by



ensuring that each varval vi = a s.t. a ∈ di has at least one support, i.e., there
exists at least one valid tuple containing vi = a. If any component of the support
is pruned either a new support can be found in the trie, or the vi = a is pruned.

Such a constraint will prune the varval vi = a if and only if every tuple
containing vi = a has at least one component varval pruned. We will say that a
pruning vi 8 a is a cover for tuple t i� vi = a is a component of t. Hence the
explanation for vi 8 a is a set containing at least one cover for each tuple con-
taining vi = a. We demonstrate explanations for GAC-schema using Katsirelos'
naïve scheme [15] which was arguably the most successful of the techniques he
tried. The algorithm simply picks any pruned component from each tuple.

This can easily be implemented with tries: perform an inorder traversal of
the trie but whenever a node corresponding to a pruned varval is visited add the
corresponding pruning to the set and don't recurse any further. Each pruning
covers all the tuples beneath the point in the trie when it was added. Figure
1 (top) illustrates this process: when an explanation for d ← 1 is required, the
traversal produces {b 8 1, c 8 2, c 8 3, a 8 2}. Note that b 8 3 and b 8 4 are
not included in the traversal because all supports are covered without them.

Lazily, we are presented with the same trie, but with at least as many pruned
values. We cannot be sure of satisfying Property 2 by applying the same traversal,
for later additional prunings could be wrongly used when they could have had
no e�ect on the earlier propagation. Instead, we adapt the algorithm to add to
the set only values that were made at that time; i.e., to explain a pruning at
depth a.b, we would consider only nodes for varvals pruned at a depth less than
a.b. Such a situation is illustrated in Figure 1 (bottom) where the double lined
triangular nodes are not used.

An explanation could be built eagerly with no increase in asymptotic time
complexity since the propagators must traverse the entire trie anyway prior to
doing any pruning. By being lazy we incur at most one extra trie traversal per
explanation because we might have to repeat the traversal when the explanation
is requested. However fewer traversals will be needed overall if fewer than half
of the explanations are needed.

The previous examples illustrate that the time and space complexity of lazy
explanation generation can match eager evaluation in the worst case, but with
the additional advantage that it may never become necessary. The next example
will show that lazy explanations can be e�cient even for complex propagators
like GAC alldi�.

4.4 Explanations for alldi�erent

The alldi�erent (alldi�) constraint (see [8] for a review) ensures that the variables
in its scope take distinct values. For example, consider the variable value graph
in Figure 2, where we have 4 variables and 5 values. The current domains are
illustrated by having an edge from variable vi to value a whenever a ∈ di.

In the following, let r denote the size of an alldi�'s scope and d the size of
the largest domain. Régin's GAC alldi� propagation algorithm [27] �rst creates
a maximum matching (size 4 matching shown with bold lines in the �gure) in
O(r1.5d) time and then uses Tarjan's algorithm to �nd Hall sets in O(rd) time.
Hall sets are sets of k variables such that the union of their current domains has
size k (we refer to this union as the combined domain). Clearly the variables
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Figure 2. (left)Variable value graph at time of original pruning (right) Same graph at
time of explanation

in a Hall set must consume the combined domain and so the values can be
removed from the domains of all other variables. In the �gure an unsupported
value 2 ∈ dom(z) is shown with a dotted line, it is unsupported because 2 is
used by the Hall set {w, x, y}.

To enable explanations to be produced later, a pointer to the constraint is
stored for each pruning. Later, an explanation can be produced as follows:

1. The alldi� propagator maintains a maximum matching as domains are nar-
rowed. The most recent complete matching would have been valid when the
pruning was done, since edges are only ever removed as domains are nar-
rowed. Notice that the matching in Figure 2 (right) is also valid for Figure
2 (left).

2. Find the Hall set that earlier consumed the pruned value, by running Tar-
jan's algorithm, but using earlier domain state reconstructed by inspecting
pruning depths, as described in Subsection 4.3.

3. The explanation is the conjunction of all the prunings from variables in the
Hall set (except the values in the combined domain), since the removal of
these values ensured that the Hall set HS's combined domains consisted of
|HS| values. This operation is O(rd).

Hence, in the example of Figure 2 the explanation is {w 8 4, w 8 5, x 8
4, x 8 5, y 8 4, y 8 5}. These prunings are enough to ensure only 3 values
remain in {x, y, z}'s combined domain.

Contrast this with eager explanations, where the Hall set is known when the
pruning is done, and the explanation can then be built in O(rd) time. Hence,
when we consider prunings individually, lazy learning's worst case time com-
plexity of O(rd) matches the eager approach, with the additional advantage
that some of them will never be built. Note that there is an additional advan-
tage for eagerness, which is that the same explanation could be used for several
values and hence built only once; lazily it may be built several times. This means
laziness is theoretically worse if the number of prunings per propagation is not
bounded by a constant. It is not clear which variant will win in practice.

4.5 Explanations for arbitrary propagators

We have now described how to apply the lazy approach to a variety of constraints.
Katsirelos' GAC-Generic-Nogood [15] is a procedure for �nding explanations for



an arbitrary propagator with unknown implementation: the explanation of a
(dis-)assignment is just the set of all prunings from other variables in the scope
of the constraint. It can easily be evaluated lazily by including only prunings
that were made before the propagation happened, a similar trick to Sections 4.3
and 4.4. In this way we can be sure that a generic explanation can always be
produced lazily, although by specialising for each propagator as described above
we will obtain smaller explanations and/or reduce the time taken to compute
them.

5 Experiments

We evaluated the e�ectiveness of lazy explanations in a g-learning solver.

5.1 Implementation

Our g-learning solver is based on the minion solver3, a highly optimised solver
that didn't originally contain any learning or explanation mechanisms [6]. We
make implementation decisions so that compared to the experiments in [15] we
are varying only the method used to produce explanations. Hence we choose
to implement our solver with d-way branching, dom/wdeg variable ordering [1]
and far backtracking as described in [15]. Our solver tries to use a �rstUIP cut,
but in case the �rstUIP doesn't propagate the �rstDecision cut is tried next and
must cause a pruning. We believe that Katsirelos' solver uses �rstDecision once
a loop is detected but the details are unpublished [14]. Finally node counts are
not directly comparable because we do not know how they were calculated.

To produce explanations we store an small object with a polymorphic func-
tion that produces an explanation. For eager, the stored explanation is returned
immediately; for lazy, the function implements an algorithm to calculate the ex-
planation. Explanations are not memoized, hence they may be calculated mul-
tiple times. This decision has no e�ect on the eager implementation, although
it may be to the detriment of the lazy implementation. Learned clauses are
propagated by the 2-watch literal scheme [21].

5.2 Benchmarks

We used a large and varied set of benchmarks, consisting of:

� crossword problems,
� antichain problem,
� peg solitaire instances, and
� every extensional instance from the 2006 CSP Solver Competition.

With the exception of antichain, these were all produced by Tailor [9] using
instances from the CSPXML repository [18] and those described in [11]. We
chose these instances because we have to date implemented lazy explanations
for constraints =, 6=, <, literal, not literal, disjunction (of arbitrary constraint),
table and negative table.

3 speci�cally revision number 1885
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Figure 3. Scatterplot showing runtime comparison for minion versus minion-lazy. Each
point is a result for a single instance. The x-axis is the solve time for minion (i.e.,
excluding set up time which is identical for both). The y-axis gives the speedup from
using minion-lazy instead of minion. A ratio of 1 means they were the same, above 1
means minion-lazy was faster and below 1 that minion was faster. Subsequent graphs
are the same style.

5.3 Experimental methodology

Each of the 1418 instances was executed three times with a 10 minute timeout,
on a Red Hat Linux server kernel 2.6.18-92.1.13.el5xen with 8 Intel Xeon E5430
cores at 2.66 GHz. Each run was identical, and we use the minimum time for each
in our analysis, in order to approximate the run time in perfect conditions (i.e.,
with no system noise) as closely as possible. Each instance was run on its own
core, each with 996MB of memory. Minion was compiled statically (-static)
using g++ with �ag -O3.

5.4 Results - lazy learning vs. no learning

First we will brie�y give some results comparing lazy learning with no learning
at all, i.e., ordinary minion with d-way branching. Figure 3 shows that learning
is e�ective on certain classes of benchmark, but more work remains to be done to
make it robust across a larger range of benchmarks. Some of these results di�er
from Katsirelos' [15]. This is because minion is a very highly optimised solver
(it explores a much greater number of nodes per second) and hence in order to
compensate for the overhead of learning a larger reduction in nodes is required.
However, we do not know of faster solution times for peg solitaire [11] and other
classes achieve speedups of up to 10000x.



5.5 Results - lazy learning vs. eager learning

Now we turn our attentions to the subject of this paper: are lazy explanations
e�ective in reducing the runtime of the g-learning framework? The answer is
yes. Figure 4 shows an overall reduction in number of explanations generated in
all cases, up to a factor of 200 reduction. This proves that the rationale behind
lazy learning is correct�many explanations are never used and hence we should
try to avoid calculating them. For example a point with y-axis 20 needed just
1/20th of the explanations.

Next we exhibit Figure 5, which con�rms that, on the whole, time is saved by
using lazy explanations: lazy explanations can double our solver's search speed,
without a�ecting the search tree traversed signi�cantly4. Note that this speedup
is the whole solver, not just the learning engine. This is an particularly signi�cant
because the solver spends only part of its time computing explanations. In fact,
on some instances we approach the maximum possible speedup, i.e., time to
generate explanations approaches 0. In other solvers where learning is less of an
overhead the speed increase may be less, but we have been careful to optimise
both lazy and eager learning in our solver. We carried out a non-parametric
t-test (Wilcoxon signed ranked test) and found that the di�erence between lazy
and eager is statistically signi�cant at the 1% level.

Lazy learning is detrimental to a small number of instances. Note that the
SAT instances which are below the line are probably noise, because their runtime
is very small and furthermore for SAT clauses lazy and eager learning are the
same. The quasigroup instances below the line are interesting: Figure 4 shows
that most explanations are eventually used in the learning process for these
instances. The increase is search time re�ects the fact that lazy explanations for
the table and negative table constraints require additional traversals of the trie
data structure compared with eagerness (see Section 4.3).

6 Related work

We now review earlier research involving learning and/or explanations, to show
that explanations are common in CSP algorithms and to convince the reader
that lazy explanations are a new idea for CSP solvers. Some of the earliest CP-
speci�c work was by Frost and Dechter [5, 4] on value- and graph-based learning;
and jump-back learning. Value- and graph-based begin with the failing partial
assignment. Assignments are removed selectively while maintaining the property
that it cannot be extended to a solution. Rather than using explanations to do
this, a precomputed table is used to establish if a value is compatible with all val-
ues in another variable. The jump-back scheme piggy-backs on con�ict-directed
backjumping (CBJ) [25, 26]. CBJ collects explanations eagerly so it can later
work out the reasons for failures. Ginsberg's dynamic backtracking [10] builds
�eliminating explanations� eagerly to provide knowledge of which assignments
were the cause of inconsistent values in other variables. Schiex et al. [29] describe
how to build and use generic explanations that are not made by the propagator.
Jussien et al. [28, 12, 13] described how to produce explanations (consisting of as-
signments only) for global constraints for various purposes including integrating

4 sometimes lazy and eager make di�erent choices between suitable explanations
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MAC and dynamic backtracking, user interaction and learning constraints. They
were produced eagerly by propagators. Cambazard et al. [2] used eagerly built
explanations for variable and value ordering heuristics. G-learning (see Section
2.2) is a signi�cant improvement on previous learning schemes as it makes the
insight that g-explanations, i.e., explanations containing dis-assignments as well
as assignments, are far superior in terms of compactness and propagation power
when combined to create new constraints. As described above it too uses eager
explanations. Lazy clause generation [24] makes use of explanations in order to
derive so-called propagation rules which are then posted into a SAT solver. Ex-
planations are derived eagerly; indeed it would not make sense to derive them
lazily as they are always propagated immediately. Explanations have also been
computed eagerly for constraints implemented as BDDs [30].

Hence to the best of our knowledge the idea of lazy explanations are unex-
ploited in CSP algorithms, although they have potential in many areas. We now
summarise similar ideas from related �elds.

Satis�ability modulo theories (SMT) solvers use a form of lazy explanations
[23], whereby theories are able to retrospectively produce explanations for the
assignments they make to SAT variables. The motivation for this technique is
the same as our motivation: to reduce the number of unnecessary explanations
produced. [23] gives empirical results proving the e�ectiveness of the technique in
SMT solvers. We have shown that the technique is also valid and e�ective in CSP
solvers. Currently, the SMT community are incorporating constraint propagation
algorithms into their tools (see SAT 09 invited talk [22]). Hence this paper also
contributes to SMT by describing how to produce lazy explanations for several
key global constraints that are currently being integrated into SMT solvers.

In [31] explanations (called justi�cations) are computed lazily in a specialised
solver for the jobshop problem involving only specialised scheduling constraints.
They are used to implement con�ict directed backjumping. Empirical results
show that between 25 and 80% of explanations are never needed, but the paper
does not empirically justify that time is saved by their use.

7 Conclusions and Future Work

We have introduced lazy explanations for constraint propagation, in which ex-
planations are computed as needed, rather than stored eagerly. This approach
conveys the twin advantages, con�rmed experimentally, of reducing storage re-
quirements and avoiding wasted e�ort for explanations that are never used.

In future work, we will create lazy explainers for constraints other than those
featured herein. A further important item of future work is to investigate for
speci�c propagators whether laziness is advantageous.
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