
C-learning: Further Generalised G-nogood
Learning

Neil C.A. Moore
ncam@cs.st-andrews.ac.uk

School of Computer Science, University of St Andrews, St Andrews, Scotland, UK.

Abstract. This paper contains practical and theoretical contributions
regarding forms of conflict-driven learning more general than g-nogood
learning, specifically learning disjunctions composed of arbitrary con-
straints rather than just assignments and disassignments. A practical
implementation of the idea, called c-learning, is given. Most importantly,
an exponential separation between c-learning and g-nogood learning is
proved: i.e. that is there exists an infinite family of CSPs for which g-
nogood learning necessarily takes exponential time, but which c-learning
can solve in polynomial time. Finally, to demonstrate the practical pos-
sibilities of this result, an experiment is performed demonstrating c-
learning’s exponential superiority on the family of CSPs used in the
proof.

1 Introduction

One possible criticism of state of the art learning in CSP is that though CSP
derives its strength from powerful global constraints, CSP learning works on a
SAT representation.

The idea of this paper is to investigate how to adapt the g-learning framework
to incorporate constraints more general than (dis-)assignments. This is done by
means of so-called c-explanations, to be defined rigorously later, but I will give
a quick example now to motivate this introduction.

Example 1. The element constraint is over a vector of variables V , an index
variable i and variable e, and ensures that V [i] = e. Suppose that e becomes
assigned to 4 and 4 is removed from dom(V [7]). The propagator should detect
now that i cannot be set to 7. The best g-explanation for the pruning is {e ←
4, V [7] 8 4}.

However if any constraint and not just assignments and disassignments can
be used in explanations then another possible explanation is just {e 6= V [7]},
because whenever e and V [7] are not equal, i 8 7. This is a c-explanation because
it is composed of constraints rather than simply assignments and disassignments
(collectively, (dis-)assignments).

The advantages of c-explanations over g-nogood explanations include:

– They are at least as concise.

– They are more descriptive: in Example 1, the c-explanation covers the infer-
ence of i 8 a that will result when e← a and V [7] 8 a for any choice of a,
rather than just the specific assignment and disassignment that led to the
propagation occurring in the current state of search.

– As I will show later, it is often easier to work out a good c-explanation,
because the vocabulary available is higher level and often the explanation is
recursively related to the definition of the constraint that emits it.

– c-explanations can be less dependent on current domain state. See Example
1 where value 4 is eliminated from the explanation without weakening it.

In the remainder of this paper I will give formal definitions of c-explanations;
review the relevant background material; compare their expressiveness versus
g-explanations; describe how c-learning can be implemented in an existing g-
nogood learning framework; prove that there is an exponential separation be-
tween c-learning and g-learning; and demonstrate the separation empirically.

The following is a more rigorous definition of the concept of c-explanation
introduced in Example 1.

Definition 1. A c-explanation for a solver event e1 is a constraint con that is
sufficient for the solver to infer e.

Note 1. It is equally valid to think of a c-explanation as introducing a new reified
constraint con and reification variable r such that r ↔ con and then including
variable r in the literals of a g-explanation2.

It should be clear to readers familiar with g-nogood explanations (henceforth
g-explanations) [2] that c-explanations are a generalisation of g-explanations
(Definition 2).

2 Background

I will now briefly introduce g-nogood learning and other techniques in CSP that
generalise it.

2.1 g-nogood learning and lazy explanations

Katsirelos et al ’s [3, 4, 2] g-nogood learning (g-learning) is a notable CSP search
algorithm. In short, whenever the solver reaches a dead-end state, a new con-
straint is added ruling out other branches that fail for a similar reason.

In order to achieve this, the first step is to analyse the earlier decisions and
propagation that contributed to the current failure. The aim is to find a set of
assignments and disassignments that, if repeated, lead directly to a failure.

To analyse propagation, explanations are used:

1 e.g. an assignment x← a
2 in this respect c-learning incorporates features of extended resolution [1]

Definition 2. A g-explanation for disassignment x 8 a is a set of assignments
and disassignments that are sufficient for a propagator to infer x 8 a. Similarly
a g-explanation for assignment y ← b is a set of (dis-)assignments that are
sufficient for a propagator to infer that y ← b.

Example 2. Let a, b and c be three distinct values.
Suppose decision assignments w ← a and x ← a have been made. These

assignments clearly also cause the remaining values of w and x to be ruled out;
we can think of this disassignment being carried out by a built-in “at most
one value” constraint. For example now x 8 b and the g-explanation for this
disassignment is {x← a}.

Now suppose the set of constraints includes both occurrence([w, x, y, z], b) =
2 and occurrence([w, x, y, z], c) = 1, meaning that variables w, x, y and z must
have, respectively, exactly 2 occurrences of b and exactly 1 occurrence of c.

Since w ← a and x ← a, the former constraint is forced to infer that y ← b
and z ← b. The explanation for both y ← b and z ← b, for example, is {w 8
b, x 8 b} because when w and x are both not assigned to b, we are forced to set
the remainder of the variables to b.

Similarly, since w ← a, x ← a and y ← b, the latter constraint is forced to
infer that z ← c in order to satisfy the constraint. The g-explanation for z ← c
is {w 8 c, x 8 c, y 8 c}.

These g-explanations along with the decision assignments can be built into
a implication graph:

Definition 3. An implication graph for the current state of the variables is a
directed acyclic graph where each node is a current (dis-)assignment and there
is an edge from u to v iff u appears in the explanation for v.

w← a w 8 c z ← b

w 8 b z ← c

x 8 c y 8 c

x← a x 8 b y ← b

Fig. 1: Implication graph for Example 2.
Mutually inconsistent nodes shown with
darkened nodes; cut from Example 3
with dashed line.

The g-explanations of Example 2
are displayed as an implication graph
in Figure 1.

Repeating the (dis-)assignments
in a g-explanation will inevitably lead
to the same propagation being re-
peated, therefore repeating any cut of
an implication graph for a failure will
inevitably lead to the derivation of the
failure again. Hence we build a con-
straint to avoid that failure by finding
a cut {c1, . . . , ck} of the implication
graph and then adding the constraint
to avoid the failure c = ¬(c1∧. . .∧ck).
Now the solver backtracks and contin-
ues.

Example 3. The cut displayed as a
dashed line in Figure 1 leads to the
constraint ¬(x← a ∧ w 8 c ∧ w 8 b).

For correctness and efficiency reasons certain cuts are preferred. In this paper
the firstUIP and firstDecision cuts [5] are used, both of which contain exactly
one (dis-)assignment that became true at the current depth in search. Both are
derived by taking an initial cut, consisting of the (dis-)assignments that directly
cause a failure, e.g. x← 1 and x 8 1 Next the algorithm repeatedly replaces the
deepest literal by its explanation until a termination condition is reached. For
firstUIP the procedure stops when there is exactly one literal from the current
decision depth, and for firstDecision it stops when the only literal left is the
decision from the current decision depth. After the solver backtracks, the new
constraint based on the cut is guaranteed to be unit and will thus propagate
resulting in some new progress.

The power of g-learning comes from learned constraints proceeding to propa-
gate and being combined by iterative application of the above process into more
powerful constraints that can remove subtrees of the search tree, as opposed to
just providing a shortcut to propagation, as in the above examples.

g-nogood learning is extremely effective on some types of benchmark, but
has a negative effect on others. Firstly, there is an overhead associated with
instrumenting constraint propagators to store explanations, which are needed to
produce the new constraints. This problem is mitigated by lazy learning [6] which
dramatically reduces the overhead of g-learning; however the new constraints
must still be propagated and this slows the solver down, too.

2.2 Context

The idea of generalising explanations further than g-learning has appeared sev-
eral times in the constraints literature.

2.3 Katsirelos’ c-nogoods

Katsirelos [3] concludes his thesis by giving a very brief description of various
possible techniques that use constraints more general than (dis-)assignments to
explain prunings. Katsirelos presents this as the addition of a boolean variable
vC representing the new constraint, i.e. vC ↔ C is posted. Now vC can be
incorporated into explanations as appropriate3.

Katsirelos describes how to use c-nogoods only in the context of logical con-
straints and and or. For example, consider the constraint C1 ∨ C2 and suppose
that C1 is disentailed. Using delayed disjunction propagation [7], the remaining
disjunct C2 will be propagated and suppose it causes v 8 a. A g-explanation for
this propagation consists of a g-explanation for the disentailment of C1, plus a
g-explanation for v 8 a by C2. In the c-explanation, all that is needed to explain
the entailment of C1 is the single literal vC1

. Until this paper, no experiments
testing this idea have been carried out [3].

Compared to Katsirelos’ work, my practical contributions in this paper have
been to show how this general idea can be applied to non-logical constraints, to

3 note the obvious similarity to extended resolution [1]

describe a framework for it to be implemented and to complete an implemen-
tation in minion so it can be evaluated empirically. I have also progressed the
theoretical understanding of this technique, by proving results about the proof
complexity of c-learning versus g-learning.

2.4 Lazy clause generation

Lazy clause generation (LCG) also generalises g-learning by allowing nogoods to
contain unary constraints like x ≤ a as well as (dis-)assignments. This improves
the conciseness of explanations, but not their expressiveness. This is simply
because if a clause contains x ≤ a is false, for some a, it can easily be replaced
by x← a ∨ x← a− 1 ∨ x← a− 2 Hence unlike c-learning, LCG is no more
expressive than g-learning.

2.5 Caching using constraints

Learning based on constraints has been tried with some success in the context of
caching as opposed to constraint learning [8]. Caching is when the search space
previously searched is stored as a set of keys, if the current part of search matches
a previously searched key then the outcome can be read out of the stored cache.
To some extent the distinction between learning and caching is quite artifical:
learned constraints are propagated along with the other problem constraints,
whereas cached keys are not propagated. Caching relies on keys generalising
the subtree in which they are found so that they can be used to avoid search
elsewhere. In [8], a “projected key” for each individual constraint is conjoined to
form a key for the entire subtree just searched unsuccessfully. For example if the
problem contains c = alldiff(w, x, y, z) s.t. w, x, y, z ∈ {1, 2, 3, 4} and decisions
w = 1 and x = 2 then the projected key for c is alldiff(y, z) ∧ y, z ∈ {3, 4}.
This is a key that generalises the subtree from which it is derived, because the
constraints in the key are stronger than the problem constraints. The practical
results in [8] show that the technique can beat state of the art CSP solvers (with
and without learning) on several problem classes.

2.6 Summary

In spite of the approaches described in this section, this paper contains the
first practical contribution towards generalising constraint learning beyond unary
constraints, as well as fundamental algorithms and theoretical contributions to-
wards understanding the potential of the technique.

3 Expressivity of c-learning

In his thesis, Katsirelos said “there may exist an exponential in the arity of
C number of nogoods (g-nogoods) to explain the fact that C is disentailed”.
This is important because it shows that a single c-nogood is as expressive as an

exponential number of g-nogoods. However, it is important that the g-nogoods
should also be minimal, so that their full power is available. Hence in this section
I will prove that a single c-nogood is as expressive as an exponential number of
minimal g-nogoods.

A strong result can be stated on the relative expressivity of g-explanations
and c-explanations. First I must define prime implicant :

Definition 4. An implicant I of a boolean formula f(x) is an assignment to a
subset of the input arguments of f such that the output of f must be 1. A prime
implicant is a set minimal implicant, i.e. it can’t have assignments removed from
it and still be an implicant.

Prime implicants are related to minimal g-explanations in a simple way:

Lemma 1. A prime implicant of function f is the same as a minimal explana-
tion for output← 1 in the constraint output = f(x).

Proof. g-explanations must be sufficient for the event they are explaining, and
implicants must be sufficient for the output of the circuit to be true. Furthermore,
minimal explanations must be setwise minimal, and prime implicants setwise
minimal.

For the parity function, there are at least 2n−1 different prime implicants:

Fact 1 (given as Proposition 6.1 in [9]) The parity function f(x) = (x1 +
. . . + xn) mod 2 has 2n−1 prime implicants of length n each4.

Such a set of prime implicants covers each possible input to f whose result
is true once and only once, since each implicant includes an assignment to each
input. By the correspondence between prime implicants and g-explanations:

Corollary 1. There are 2n−1 minimal g-explanations for output ← 1 for con-
straint output = parity(X1, . . . , Xn).

Proof. By Lemma 1 every implicant is a valid g-explanation. By Fact 1 there
are 2n−1 distinct prime implicants and hence there are 2n−1 distinct minimal
g-explanations for output← 1, one per assignment to X1, . . . , Xn.

However the c-explanation for output← 1 in constraint output = parity(f) is
just parity(f) = 1, which is an extremely trivial explanation but exactly captures
the required property. Hence when a failure is due to odd parity, 2n−1 g-nogoods
are required to cover all possible reasons whereas a single c-nogood will do the
job. Later, in §5, I will use Corollary 1 to show that entire search trees can be
much smaller when c-explanations are used rather than g-explanations. Roughly,
this is because with c-nogoods the solver can learn a small powerful constraint
like parity(f) = 1 which can cause immediate failure and prove unsatisfiability
easily, whereas using g-nogoods it is restricted to enumerating numerous weak
constraints until the search space is eventually exhausted.

4 this is because all prime implicants of parity include assignments to all variables,
intuitively because the parity can be changed by flipping a single input

4 Implementing c-learning

Clearly c-explanations generalise g-explanations. They can be substituted into
the g-learning framework with only a few changes. However it is necessary to
generalise the definition of implication graph (IG) to suit c-learning:

Definition 5 (c-learning implication graph). An implication graph for the
current state of variables is a directed acyclic graph where

– each node is a currently true constraint, and
– there is an edge from u to v iff u appears in the explanation for v. ut

Recall that g-learning requires the following capability for each node in the
IG:

– determine at which depth it became entailed (provided by recording the
depth of each decision and inference), and

– discover the constraints that are responsible for its entailment (provided by
recording an explanation for every propagation).

For the purposes of implementing c-learning, it is usually relatively easy to
determine if constraints are entailed: in the worst case each possible assignment
could be enumerated in O(da) time where d is the domain size and a the arity,
and each can be checked for conformance to the constraint in polynomial time.
Usually there is a specialised algorithm for each constraint that is efficient.

Since determining entailment is usually easy, so too is discovering the depth at
which it became entailed: simply search for the first depth at which it is entailed.
However it is better to use tailored algorithms for each constraint where possible.

Discovering the constraints responsible for entailment is done using an expla-
nation procedure, as in g-learning. As an example, I will describe an explanation
algorithms for an occurrence constraint propagator in §4.4.

Another thing to notice is that the constraint used to explain the event is
not necessarily an existing constraint in the CSP, in fact it is quite likely not
to be. This is crucially important in practice because it means that the IG
cannot be built eagerly, while propagation is done, because many of the nodes
are brand new constraints. Instead the IG must be uncovered lazily starting with
the concrete events that cause failures, as described in [6]5.

Example 4. Following on from Example 1. Suppose that at the current point in
time e ← 4 and v[7] 8 4, but the propagator for element(V, i, e) has not yet
fired. In Example 1, I showed that {e 6= V [7]} is a valid c-explanation for the
propagation i 8 7 that will occur. The constraint e 6= V [7] is in fact entailed
by the current domain state, but so are many other constraints6. Hence it is
infeasible to build a representation of the IG eagerly, because the solver cannot
anticipate what constraints will be introduced. Once the propagation i 8 7 has
occurred, the constraint e 6= V [7] becomes concrete.

5 in g-learning being lazy is useful but not essential, here it is essential
6 e.g. any constraint satisfied by any remaining assignment to any possible subset of

the current variables

Conversely, in g-learning, the constraints that can become involved in the IG
are known at all times: it’s just the set of current assignments and disassignments.

4.1 Required properties of c-explanations

c-explanations being used in IGs and processed to find a firstUIP cut using
the procedure alluded to in §2.1 must conform to certain properties. Suppose
explanation {c} labels event e:

Property 1. The entailment depth of c may not be greater than the depth of
event e.

Remark 1. Ensures that causes precede effects, ensuring no cycles in the impli-
cation graph.

Property 2. Paths in the IG must be finite, i.e. c-explanations must eventually
bottom out to (dis-)assignments.

Remark 2. This property is implicit in g-learning, for since the edges always go
from nodes with a higher to a lower decision depth, paths must be finite. In
c-learning this is not automatically the case, because it would be possible for an
infinite path of virtual constraints to occur with the same entailment, e.g. two
equivalent constraints that each explain their own entailment using the other.
An infinite path might mean a cut cannot be computed in a finite number of
steps.

4.2 Propagating clauses consisting of arbitrary constraints

One of the fundamental ingredients that makes nogood learning work is that the
clauses learned are guaranteed to propagate on backtrack, so that progress is
always made. Suppose that firstUIP cut {c1, . . . , ck} is added as nogood (¬c1 ∨
. . . ∨ ¬ck−1 ∨ ¬ck). By the properties of firstUIP, c1, . . . , ck−1 are all disentailed
when the constraint is posted. Hence ck will be unit propagated.

My solver uses watched literals to propagate arbitrary disjunctions of con-
straints (watched or) [10]. Using watched or, each disjunct constraint must be
implemented with a complete satisfying set generator, which means that the
watched or propagator can detect as soon as it has become disentailed (see [10]).
This means that unit propagation can happen as soon as possible.

In the case of g-learning, ck is guaranteed to propagate, since a (dis-)assignment
can always propagate successfully. However I will now show that this is not the
case in c-learning, by exhibiting a counterexample:

Example 5. Consider the CSP consisting of variables V [1], V [2], X and Y each
with domain {0, 1} and constraints

– occurrence(V, 1) ≤ 1↔ X,
– occurrence(V, 1) ≤ 1↔ Y , and

– X ∨ Y .

Suppose that V [1] ← 1 at depth 1.0. No propagation is possible by any
constraint (this is less obvious for the bi-implications than for X ∨Y , but it can
be verified by inspecting all possible assignments over the scope V [1], V [2], X
(similarly for Y) which consist of

{(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}

for both bi-implications.
Suppose next that V [2] ← 1 at depth 2.0. Now the left hand size of each

bi-implication constraint is definitely disentailed, and the bi-implications will
propagate X ← 0 and Y ← 0 respectively. Hence clause (X ∨ Y) is empty
and conflict analysis will follow. The implication graph is shown in Figure 2.
Clearly occurrence(V, 1) > 1 is a c-explanation for assignments X ← 0 and
Y ← 0. The firstUIP cut is actually just {occurrence(V, 1) > 1}. Conflict analysis
will therefore backjump to depth 0 and attempt to propagate the constraint
occurrence(V, 1) ≤ 1. The occurrence constraint cannot rule out any value and
so no propagation will occur, as I set out to show.

V [1] = 1 X = 0

occurrence(V, 1) > 1 Conflict

V [2] = 1 Y = 0

1.0

2.0

2.0

2.1

2.2

Fig. 2: Implication graph for Example 5

However the firstDecision cut
is guaranteed to propagate be-
cause the disjunct that is unit will
definitely be a (dis-)assignment.
Hence the approach taken in c-
learning is first to try the firs-
tUIP constraint, monitoring if
any propagation occurs, and if
not, revoke it and add the firstDe-
cision cut, which is guaranteed to
result in some progress. Hopefully
this will not be necessary very of-
ten, but it is essential for correct-
ness. Note that the benefits of c-
learning do not require that any
additional propagation occurs immediately after backtrack. In fact, the more
generalised disjuncts need never themselves become unit: they need only be vi-
olated more often and thus help other clauses to become unit more often than
in the case of g-learning.

4.3 Common subexpression elimination

Common subexpression elimination is when the same constraint expression posted
twice is replaced by a single occurrence of the expression. For example, consider
the following example from [11]. Expression a + x× y = b ∧ b + x× y = t might
typically be flattened to aux1 = x×y∧a+aux1 = b∧aux2 = x∗y∧b+aux2 = t.
However when common subexpressions are taken into account, aux1 = x×y∧a+

aux1 = b ∧ b + aux1 = t is a smaller and more strongly propagating alternative
[11]. See [12] for more information.

For logical constraints like disjunction, there can be an advantage to recognis-
ing common disjuncts. The reason for this, is that, in general, there is a difference
between a constraint being forced to be satisfied, and being currently entailed.
For example, suppose that C2 is enforced by unit propagation on C1 ∨ C2. Al-
though C2 is forced to be satisfied, it is not necessarily entailed, so constraint
¬C2∨C3 may not become unit. Hence, disjunction propagation should be imple-
mented to unit propagate when all but one disjunct is either entailed or forced
to be true. I have implemented this feature in my solver for the special case
described in §6.1.

4.4 Explainers

As with g-learning, much of the effort in implementing c-learning is providing
small and correct explanations for each (dis-)assignment caused by a propa-
gator. Please note that the following c-explanations are not implemented, and
hence no experiments are included to compare them with the corresponding
g-explanations.

Occurrence The constraint occurrence(V, i) ≤ count ensures that there are at
most count occurrences of value i in vector V . In minion, i is a constant but
both V and count are variables. The constraint occurrence(V, i) ≥ count is also
available in minion, however I will only describe how to derive explanations for
occurrence ≤, since occurrence ≥ is symmetric.

The minion propagator for occurrence ≤ propagates in the following cases:

– when i is already assigned max(dom(count)) times, the constraint would be
failed if any more were assigned, so i is removed from all the other domains;
and

– remove any values from dom(count) that are smaller than the current number
of assignments in V to value i.

Note that both the g- and c-explanations for occurrence ≤ described in this
section are original to this paper.

Explanation for V [idx] 8 i The c-explanation for this type of propagation
is very simple. Suppose that V [idx] 8 i by the first propagation rule above.
It must be that the number of occurrences of i in V excluding position idx is
already max(count). Hence the explanation is simply occurrence(V [1, . . . , idx−
1, idx + 1, . . . , |V |], i) ≥ count.

A minimal g-explanation is the set of max(dom(count)) assignments of vari-
ables in V to value i, unioned with the set of prunings to count above max(dom(count)).

The c-explanation generalises the g-explanation in a number of ways:

1. If a different set of assignments makes the total number of i’s greater than
max(dom(count)), the explanation will still apply, since it does not specify
which variables in V are assigned.

2. If max(dom(count)) is smaller or larger elsewhere in search and the number
of i’s again reaches max(dom(count)), the explanation will still be valid.

I will now show how many different minimal g-explanations each c-explanation
covers. In the following, I assume that the domain of count is entirely non-
negative, for any negative numbers would be pruned out immediately anyway.
The c-explanation occurrence(V [1, . . . , idx− 1, idx+ 1, . . . , |V |], i) ≥ count cov-
ers

max(dom(count))∑
j=min(dom(count))

(
|V |
j

)
= 2|dom(count)|

because for each possible value for max(dom(count)), any set of that many
assignments of variables in V to value i can be chosen. As shown, this sum is
exponential in count [13].

Explanation for count 8 c Suppose that a propagator for occurrence ≤ has
caused count 8 c. The c-explanation is occurrence(V, i) ≥ c+1. This is because
by the second propagation rule above, c ∈ dom(count) is pruned when the count
of i’s exceeds c.

A minimal g-explanation is the set of assignments of variables in v to value
i.

The c-explanation generalises the g-explanation because it captures any pos-
sible set of at least c + 1 assignments to V .

Each c-explanation captures exactly
(|V |
c+1

)
g-explanations, that is, all the

ways to set c + 1 variables in V to i.

5 Proof complexity of c-learning

I will now prove that c-learning can be significantly superior to g-learning: there
is an exponential separation between the two, meaning that there exists an infi-
nite family of instances of increasing size parameter n such that any backtracking
search algorithm using g-nogood learning takes at least exponential time in n
using any possible search strategy whereas there is a simple algorithm that learns
c-nogoods that can solve any such problem in time polynomial in n. First some
definitions are required:

Definition 6. The constraint parity(X) ensures that (
∑

i Xi) ≡ 1 mod 2, where
X is a boolean vector. Hence ¬parity(X) is just (

∑
i Xi) ≡ 0 mod 2.

This constraint is interesting for several reasons. The first is that until all
but one of the variables is instantiated, a propagator cannot prune any values:

Lemma 2. No propagator for parity(X) can remove any values until |X| − 1
variables are instantiated.

Proof. Let I be the proper subset I ⊂ X of size k that are instantiated. Suppose
|X \ I| > 2, i.e. fewer than |X| − 1 variables are instantiated. Let x ∈ X \ I
be arbitrary and let others = X \ I \ {x}. Suppose that the sum of I is either
congruent to 1 (resp. 0) modulo 2. Then 0 ∈ dom(x) is supported because others
can be assigned s.t.

∑
others ≡ 0 mod 2 (resp.

∑
others ≡ 1 mod 2). Also

1 ∈ dom(x) is supported because others can be assigned s.t.
∑

others ≡ 1 mod 2
(resp.

∑
others ≡ 0 mod 2). Hence 0 and 1 are supported for all uninstantiated

variables if |X \ I| > 2, as required.

The second required fact is that parity(X) is not entailed until all |X| vari-
ables are instantiated. This should be obvious from the previous lemma and its
proof.

Lemma 3. parity(X) is not entailed until |X| variables are instantiated.

I can now introduce the infinite family of problems of increasing size used to
prove the result, parameterised by n:

Definition 7. CSP M(n) consists of variable x and vector of variables X of
length n, each of which has a {0, 1} domain, and constraints

x← 1 ∨ parity(X) (1)

x← 1 ∨ ¬parity(X) (2)

x 8 1 ∨ parity(X) (3)

x 8 1 ∨ ¬parity(X) (4)

There are various techniques that would make this instance very easy, such
as remodelling the problem by reifying parity(X), and I seek to prove that c-
learning is one such technique. The proof relies on the fact that it should be
possible to discover when r ↔ C or r ↔ ¬C has already been introduced by the
learning process, and to reuse r in future explanations where possible. In practice
this facility will save memory and also can be used to improve propagation (see
§4.3). It is also necessary to prove that g-learning will necessarily find M(n) hard
no matter how clever it is. First I will prove that c-learning will find it easy to
show that there are no solutions to M(n) for any n:

Lemma 4. For any given n, c-learning can prove M(n) unsatisfiable in poly-
nomial time.

Proof. Assign the variables in vector X so that parity(X) is entailed, e.g. as-
signment 1, 0, 0, 0, . . ., then disjunctions 2 and 4 can unit propagate to cause
x ← 1 and x 8 1. Hence {¬parity(X)} is the firstUIP cut for this conflict.
Constraint r ↔ ¬parity(X) will be introduced, where r is a fresh variable, and
the constraint r ← 1 learned.

Next assign vector X so that ¬parity(X) is entailed, then similarly to the
above {parity(X)} is the firstUIP cut. The constraint learned is r ← 0, since
r ↔ ¬parity(X) was introduced earlier.

A conflict at the root node is guaranteed because r is forced to be both 0
and 1.

Clearly this can be implemented in polynomial time for any n.

Finally I will prove that G(n) is necessarily hard for g-learning, even when
arbitrary variable and value ordering is allowed:

Lemma 5. For any given n, g-learning takes exponential time to prove M(n)
unsatisfiable using any variable ordering.

Proof. Suppose that every variable in X is assigned before x. Then w.l.o.g. and
by Lemma 3, parity(X) (or ¬parity(X)) is entailed as soon as the last assign-
ment is made and not before. Hence disjunctions 2 and 4 will propagate to force
a conflict in variable x. The conflict analysis process must include every assign-
ment to X, since by Lemma 3 all are required to ensure entailment of parity(X)
(or ¬parity(X)), without which the conflict cannot occur. This nogood rules out
only the current assignment.

The case where x is assigned before X is fully assigned is only slightly more
complex. By Lemma 2, until all but one variable xu in X is assigned, there is
no chance of any propagation. Suppose w.l.o.g. that x ← 1 (x ← 0) when this
happens. Now disjunctions 1 and 2 will unit propagate to force the remaining
variable xu to be both 0 and 1, which is required to satisfy unit implicants
parity(X) and ¬parity(X) respectively. Hence a conflict results. The g-nogood
must involve x← 1 without which 1 and 2 cannot unit propagate and the entire
assignment to X apart from xu without which the parity constraints cannot
propagate. This rules out only the current assignment.

Since by any possible variable and value ordering, each g-nogood only rules
out one partial assignment complete except for one variable, 2n partial assign-
ments must be tried before the search space is exhausted and hence the algorithm
takes exponential time.

The previous lemmas combine in the obvious way to give:

Theorem 1. There is an exponential separation between g-learning and c-learning.

Recall that Theorem 4 takes advantage of common subexpression detection,
it is an open question whether the Theorem can be proved without it. This proof
does not allow for restarts during search. There is no reason to believe the result
does not hold in the presence of restarts, but I have not proved it rigorously.

6 Experimental results

To see this in practice, I have implemented the parity constraint and have tried
the above problem in my c-learning solver. In addition I provide results on an-
tichain problems.

n c-learn time c-learn nodes g-learn time g-learn nodes
Mean (secs) Min Mean Max Mean (secs) Min Mean Max

01 0.006 1 1 1 0.006 1 1 1
02 0.006 2 2 2 0.006 3 3 3
03 0.006 3 3 3 0.006 7 7 7
04 0.006 4 4 4 0.007 15 15 15
05 0.006 5 5 5 0.007 31 31 31
06 0.006 6 6 6 0.009 63 63 63
07 0.006 7 7 7 0.013 127 127 127
08 0.007 8 8 8 0.021 255 255 255
09 0.007 9 9 9 0.041 511 511 511
10 0.007 10 10 10 0.093 1023 1023 1023
11 0.007 11 11 11 0.226 2047 2047 2047
12 0.007 12 12 12 0.589 4095 4095 4095
13 0.007 13 13 13 1.723 8191 8191 8191
14 0.007 14 14 14 5.399 16383 16383 16383
15 0.007 15 15 15 28.726 32767 32767 32767
16 0.007 16 16 16 34.970 65535 65535 65535
17 0.007 17 17 17 47.563 131071 131071 131071
18 0.007 18 18 18 117.050 262143 262143 262143
19 0.007 19 19 19 279.564 524287 524287 524287

Table 1: Comparison of c- and g-learning on parity instances

6.1 Results on family M(n)

M(n) is the problem used in §5 for proof complexity results for c-learning.

Procedure I have run M(n) for n = 1 to 19. The possibility of fast execution for
c-learning is proved by running it according to the variable and value ordering
described in Lemma 4. In order to demonstrate empirically that g-learning is
slow I have run instances up to 19 variables 100 times each using a random
variable ordering.

Implementation The g-learning solver uses lazy explanations [6]; does not
forget constraints or restart; and learns the firstUIP cut. The explainer for parity
is unique to this paper and uses minimal explanations.

The c-learning solver is based on the same solver, but uses a different ex-
plainer for watched OR [10]. Specifically, when a watched OR C ∨D propagates
D because C is disentailed, the explanation is ¬C ∪ E where E is the expla-
nation for D’s propagation. In order to detect when C or ¬C is reintroduced
by the learning system, each new constraint is added to a list when it is first
posted. If the negative of an existing constraint is posted, search is stopped.
This implementation is not very good and not as powerful as common subex-
pression detection, but does give polynomial performance and suffices for present
purposes.

Results Table 1 demonstrates convincingly that c-learning is much better at
M(n) than g-learning. c-learning solves the problem in the same number of nodes
as there are variables. g-learning takes 2n− 1 nodes as predicted by the proof of
Lemma 5. It is worth pointing out that no matter what the ordering used, this
number does not change, again as predicted by the lemma’s proof.

Discussion I appreciate that this problem is artificial in nature and arises only
as a means of proving results in proof complexity. Hence in the following section
I reproduce experiments on parity problems.

6.2 Antichain experiments

This section describes experiments applying c-learning to CSPs modelling an-
tichains. First I will define what an antichain is and then describe the CSP used
to find them.

An anti-chain is a set S of multisets where ∀{x, y} ⊆ S. x 6⊆ y ∧ y 6⊆ x. In
other words, the < n, l, d > anti-chain is a set of n multisets with cardinality l
drawn from d elements in total, such that no multiset is a subset of another.

In [10] this is modelled as a CSP using n arrays of variables, denoted M1, . . . ,Mn,
each containing l variables with domain {0, . . . , d− 1} and the constraints ∀i 6=
j ∈ {1, . . . , n}. ∃k ∈ {1, . . . , n}. Mi[k] < Mj [k]. Each variable Mi[v] represents
the number of occurrences of value v in multiset i, up to a maximum of d − 1.
Each pair of rows Mi and Mj differ in at least two places: in one position k,
Mi[k] < Mj [k] and in another position p, Mi[p] > Mj [p]. This ensures that nei-
ther multiset contains the other. The constraint ∃i. M [i] < N [i] for arrays M
and N is encoded as a watched or as follows: M [0] < N [0] ∨ . . . ∨M [l] < N [l].

This problem appears quite suitable for evaluating c-learning because the
watched or explanation (see §2.3) introduces many < constraints into the impli-
cation graph. Furthermore, it is relatively easy to detect when a < constraint is
entailed or disentailed, so the learned constraints should be relatively efficient
to propagate.

Experimental methodology Each of the antichain instances was executed
five times with a 10 minute timeout, over 4 Linux machines each with 2 Intel
Xeon cores at 2.4 GHz and 2GB of memory, running kernel version 2.6.18 SMP.
Parameters to each run were identical, and the minimum time for each is used
in the analysis, in order to approximate the run time in perfect conditions (i.e.
with no system noise) as closely as possible. Each instance was run on its own
core, each with 1GB of memory. Minion was compiled statically (-static) using
g++ version 4.4.3 with flag -O3.

The g-learning solver used is the same as described in §6.1. Two different vari-
able orderings are used and reported separately: lexicographical and dom/wdeg.

Results Table 2 shows the time and nodes taken to solve a selection of antichain
instances. The instances were chosen to include a range of different search sizes
and problem sizes. These results show that, for these instances, c-learning is
not able to significantly reduce the space searched. Hence, the CPU time is also
worse for c-learning, as expected, because the overhead of adding generalised
constraints and maintaining the c- implication graph is greater. A speedup would
only result due to a large decrease in nodes.

Instance Lex ordering domoverwdeg
C nodes C time G nodes G time C nodes C time G nodes G time

<2,2,2> 2 0.21 2 0.21 2 0.21 2 0.21
<6,4,4> 16 0.21 16 0.21 16 0.22 16 0.21
<7,3,3> 832 2.00 809 0.51 637 1.30 686 0.53
<8,3,3> ??? Time out. 14150 22.75 ??? Time out. 23817 357.87
<8,3,8> 1506 45.15 1529 2.90 56 0.23 61 0.24
<8,4,5> 346 1.03 350 0.42 327 0.94 297 0.47

Table 2: Comparison of strategies for solving antichain

Instance Median clause length (G) Median clause length (C) %C UIPS C%
6-4-4 19.0 10.0 1.00 0.90
7-3-3 14.0 18.0 0.78 0.95
8-3-3 17.0 26.0 0.88 0.94
8-3-8 80.0 28.0 0.31 0.74
8-4-5 59.0 51.0 0.70 0.82

Table 3: Runtime statistics for antichain instances using wdeg ordering

Instance Median clause length (G) Median clause length (C) %C UIPS C%
6-4-4 29.0 25.0 0.60 0.76
7-3-3 16.0 24.0 0.85 0.83
8-3-3 20.0 30.0 0.80 0.89
8-3-8 80.0 63.0 0.67 0.68
8-4-5 57.0 52.5 0.72 0.85

Table 4: Runtime statistics for antichain instances using lex ordering

I will now supply some further runtime statistics on both solver types, in
Tables 3 and 4. The former table gives statistics for dom/wdeg variable ordering
and the latter for lexicographical ordering. The columns are as follows: Median
clause length – The median number of disjunctions in learned constraints, %C
UIPS – The percentage of the time that a non (dis-)assignment is the UIP.
C% The median over all constraints of percentage of disjuncts that are not
(dis-)assignments.

There is no apparent problem with the results for the latter two statistics.
They show that most of the time, the UIP is a constraint rather than a (dis-
)assignment, allowing for the possibility of stronger propagation. They also show
that the clauses are made up primarily of constraints, allowing for better infer-
ence. The clause length statistics are more problematic, because the difference
between g- and c-learning lengths is usually relatively small, although one would
hope the c-learning constraints would be shorter since they are more expressive.

Discussion I do not know why c-learning does not work for the antichain in-
stances. I believe that good c-learning constraints should be significantly shorter
than g-learning constraints, since they are more expressive. Extrapolating from
the parity experiments in §6.1, c-learning appears to be powerful when long g-
learning constraints can be replaced by short c-learning constraints. The fact
that in these experiments, constraint length is similar is a cause for concern. I

imagine that a different method for deriving cuts may be useful to achieve this,
for example one that minimises cut width.

In conclusion, more needs to be done to see if the promise of the experiments
in §6.1 extends to problems of practical interest. I leave large scale evaluation of
more problems and constraint types to future work.

7 Conclusions and discussion

In this paper I have made practical and theoretical contributions to the under-
standing of c-learning. First I described the idea and how to implement it in a
practical solver. I also described how to produce c-explanations for the occur-
rence constraint precisely quantifying the difference in expressivity between g-
and c-explanations. Next, I answered an open question from the “Future work”
section of [3]. The proof showed that g-learning requires exponentially more
search to solve a family of CSPs compared to c-learning. It used a new approach
that does not rely on previous work on proof complexity in SAT, unlike many
proofs of this type in the past. To demonstrate the practical possibilities of this
result, I performed an experiment showing c-learning’s exponential superiority
over g-learning on the family of CSPs used in the proof.

References

1. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic Part II (1968) 115–125

2. Katsirelos, G., Bacchus, F.: Generalized nogoods in csps. In Veloso, M.M., Kamb-
hampati, S., eds.: AAAI, AAAI Press / The MIT Press (2005) 390–396

3. Katsirelos, G.: Nogood Processing in CSPs. PhD thesis, University of Toronto
(Jan 2009) http://hdl.handle.net/1807/16737.

4. Katsirelos, G., Bacchus, F.: Unrestricted nogood recording in CSP search. In: CP.
(2003) 873–877

5. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in boolean satisfiability solver. In: ICCAD. (2001) 279–285

6. Gent, I., Miguel, I., Moore, N.: Lazy explanations for constraint propagators. In:
PADL 2010. Number 5937 in LNCS (January 2010)

7. Hentenryck, P.V., Saraswat, V.A., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(fd). J. Log. Program. 37(1-3) (1998) 139–164

8. Chu, G., de la Banda, M.G., Stuckey, P.J.: Automatically exploiting subproblem
equivalence in constraint programming. In Lodi, A., Milano, M., Toth, P., eds.:
CPAIOR. Volume 6140 of LNCS., Springer (2010) 71–86

9. Wegener, I.: The complexity of Boolean functions. Wiley-Teubner (1987)
10. Jefferson, C., Moore, N.C., Nightingale, P., Petrie, K.E.: Implementing logical

connectives in constraint programming. Artificial Intelligence Journal (AIJ) 174
(November 2010) 1407–1420

11. Rendl, A., Miguel, I., Gent, I.P., Jefferson, C.: Automatically enhancing constraint
model instances during tailoring. In: SARA, AAAI (2009)

12. Rendl, A.: Effective Compilation of Constraint Models. PhD thesis, School of
Computer Science, University of St Andrews (2010)

13. Rosen, K.H.: Discrete mathematics and its applications (2nd ed.). McGraw-Hill,
Inc., New York, NY, USA (1991)

