
US. Patent Apr. 1, 2014 Sheet 1 015 US 8,689,281 B2

Input/ 30
10 output

l14
0 Memory

12

Processor

16
<—> /

I ,2,

US. Patent Apr. 1, 2014 Sheet 2 0f5 US 8,689,281 B2

US. Patent Apr. 1, 2014 Sheet 3 0f5 US 8,689,281 B2

110

100 \ Proposed action for document

120

Policies remain to process?

Load next highest priority policy

140
Policy metadata applies?

150

olicy conditions remain to
evaluate?

No
/ 190

160
\ _ _ Return default

Evaluate next common decision

170

Can decision be made?

180 \ Return decision End

198

Fig. 3

US. Patent Apr. 1, 2014 Sheet 4 0f5 US 8,689,281 B2

200 \

\

210 Receive administrator input
modifying policy

220 Evaluate set of policies in light of
modification

230
Administrator input required? i

No

Yes

240 \ Solicit administrator input with regard
to example(s)

250
Incorporate administrator input

260

Automatically adjust set of policies as
needed

270 \
Output set of policies

Fig. 4

US. Patent Apr. 1, 2014 Sheet 5 0f 5

Obtain new administratorr-de?ned
policy 300 \

320 / Initially assign top priority to new
policy

330
\ Compare new policy with existing

policies in set

340

Potentially incompatible policy pair?

350 \ Solicit administrator input with regard
to generated example(s)

i 360
\ Adjust priorities in accordance with

administrator input

370 \ Automatically adjust set of policies as
needed

No

US 8,689,281 B2

i 380 \ Solicit administrator approval of
addition

390 \
Output set of policies

Fig. 5

US 8,689,281 B2
1

MANAGEMENT OF CONTEXT-AWARE
POLICIES

BACKGROUND

Recent advances in document creation and management
technologies include collaborative creation and editing of
documents, automatic repurposing tools, document-centric
work?ows, and online document sharing. Cloud computing
and mobility have merged secure intranets and an insecure
Internet making it become more simple for a participant to
drag-and-drop protected data into a publicly accessible docu
ment, possibly even without realiZing it. Thus, document
access control based on information about a document alone

(document level metadata) may be insuf?cient to prevent
leakage of, or provide for adequate management of, sensitive
data. Such document level metadata could fail to transfer to or
properly describe such a newly created or modi?ed docu
ment.

For this reason, context-aware policies have been devel
oped for document management and access control. Such
context-aware policies take into account the actual (run-time)
document contents at the moment a document action is about
to be executed. Policy conditions of context-aware policies
may include document keywords, data patterns, regular
expressions, or any combination thereof, or any other condi
tion veri?able on a document and at the same time inherent to
a particular type of sensitive data. For example, a document to
be exported may be analyzed in light of the context-aware
policies, and if a condition of a policy is satis?ed, then pro
tective action de?ned by the policy may be triggered. In this
manner, an inadvertent leak of sensitive data may be avoided.
A policy may consist of speci?cation of an action to which

it is applicable, a policy condition, and possible policy excep
tions. For example, an action to which it is applicable may
include transferring a document transferring to a Universal
Serial Bus (USB), or sending by e-mail. A single policy may
be applicable to more than one action, or a more than one
policy may be applicable to the same action. A policy condi
tion may include several conditions combined by operations
such as AND, OR, or NOT. Policy exceptions may specify
when a policy does not apply. For example, a policy could
forbid sending an e-mail containing con?dential information
to all addresses except internal (e.g. within a company or
organization) e-mail addresses.

It is expected that documents that issue from a single
source (e.g. a single business or a single template) will have
common content, relating to the same subjects and topics.Yet,
only some of the documents may contain sensitive content
that may be distinguished by conditions of policies. In addi
tion, a natural language may include many ways to express a
single concept or subject. Thus, a policy may be made to be
suf?ciently ?exible so as to accommodate potential variations
as well as language in?ections or spelling errors. Context
aware policy conditions may therefore, incorporate alterna
tives, negations, and variants.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particularly
pointed out and distinctly claimed in the concluding portion
of the speci?cation. The invention, however, both as to orga
nization and method of operation, together with objects, fea
tures and advantages thereof, may best be understood by
reference to the following detailed description when read
with the accompanied drawings in which:

20

25

30

35

40

45

50

55

60

65

2
FIG. 1 schematically illustrates an example of a system for

management of context-aware policies;
FIG. 2 is a graphical representation of ordering of a set of

policies for an example of management of context-aware
policies;

FIG. 3 is a ?owchart of an example of a decision process by
application of a set of context-aware policies;

FIG. 4 is a ?owchart of an example of a method to manage
a set of context-aware policies; and

FIG. 5 is a ?owchart of an example of a method for adding
a policy to a set of context-aware policies.

DETAILED DESCRIPTION

In accordance with an example of management of context
aware policies, allowability of execution of a requested or
proposed (e.g. by a user or by an automatic application) action
on a document ?le (herein referred to interchangeably as a
document) may be determined by an enforcement mechanism
that bases its decision at least partially on a set of context
aware policies. Allowability of the action may include
enabling (allowing) the action as requested, enabling the
action in modi?ed form (e.g. requiring performance of
another action prior to enabling the requested action, or dis
abling (denying) the action. Other policies that are not con
text-aware policies may also be applied by the policy decision
mechanism.

Allowability may depend on whether or not a condition of
a policy is satis?ed. Application of a context-aware policy of
the set may yield an indicated allowability with regard to the
requested action, depending on satisfaction of a condition of
that policy. The policy condition may include a plurality of
individual sub-conditions, all or some of which need to be
satis?ed in order for the policy condition to be satis?ed. Some
or all of the individual sub-conditions may be based on con
tent of the document (e.g. a text tag, a text string, symbol, or
other document content). An individual sub-condition of the
policy condition may be based on factors other than document
content, e. g. document ?le metadata or document layout
structure.

Context-aware policies need not be mutually exclusive
(unlike some other types of security policies). For example,
the same document may simultaneously contain keywords
from two different policies, thus requiring a decision regard
ing which of the two policies is to be applied to the document.
(Although policies may be made mutually exclusive by
increasing the complexity of the conditions, it may be di?icult
for a human policy administrator to effectively comprehend
and manage such complex conditions or anticipate the
adequacy of the protection.) When application of two or more
policies to a single requested action on a single document
could indicate in mutually contradictory allowabilities (e.g.
application of one policy may indicate enable an action while
application of the other may disable the action), a priority
may be assigned to each of the policies. Thus, when evaluat
ing execution of an action on a document in light of a set of
applicable context-aware policies where application of two or
more policies yields mutually contradictory results,
allowability of the requested action may be the allowability
that is indicated by application of the policy that was assigned
the highest priority.

In accordance with an example of management of context
aware policies, the set of policies are maintained such that
they remain self consistent. A set of policies is herein consid
ered to be self consistent if application of policies of the set
(or a selected subset of relevant policies) to a single requested
action on a single document always results in an unambigu

US 8,689,281 B2
3

ously determined allowability (without mutually incompat
ible, contradictory, or ambiguous results). It may be assumed
that the set of policies is initially self consistent, e.g. free of
inconsistencies and ambiguities. For example, it may be
assumed that the set of policies was initially empty (such that
no inconsistency or ambiguity is possible), and that the meth
ods described below (to ensure a self consistent set of poli
cies) had been applied to all subsequent previous additions
and other modi?cations. When the set of policies is to be
modi?ed (e. g. when a policy is to be added to the set, deleted
from the set, or edited), policies of the set may be examined in
light of the modi?cation so as to determine mutual compat
ibility between pairs of the policies. When an incompatible
pair of policies is found (e.g. capable of yielding mutually
contradictory results), a priority of at least one of the policies
of the pair may be adjusted. Adjustment of policy priorities
may include soliciting or receiving input from a user, e.g. in
the absence of suf?cient information to enable automatic
adjustment of the priorities. In addition, an added policy may
be compared with other policies of the set for potential over
lap or redundancy. For example, if redundancy is detected, a
more generally applicable policy may be retained in the set,
while a narrower policy may be deleted.

For example, a context-aware policy may determine that a
particular action may or may not be performed with regard to
a document whose content includes one or more particular

text strings. Thus, a computer or processor that is pro
grammed or con?gured to run in accordance with the set of
policies may not be enabled to perform an operation or action
with regard to a document ?le unless that action is enabled in
accordance with the policies of the set. Actions with regard to
a document that may be enabled or disabled in accordance
with context-aware policies may include, for example among
other actions, sending (e. g. by email), uploading, editing,
printing, copying, deleting, or saving.
A condition of a context-aware policy may also be depen

dent on factors in addition to content of the document. For
example, a dependency on metadata may limit application of
a policy regarding printing to a particular printer or set of
printers. Similarly, a condition regarding sending an e-mail
may limit application of the policy to sending email to a
particular email address, set of email addresses, or domain. A
condition regarding uploading a ?le may limit application of
the policy to a particular Internet Protocol (IP) address or set
of IP addresses, and a condition regarding saving may limit
application to a particular save path or set of save paths (e.g.
from an original location to an intended destination). In addi
tion, a policy may enable (allow) or disable (deny) an action
subject to a limitation or embellishment (e.g. a required con
comitant action). Examples of such embellishments may
include, for example among others, logging, alerting,
encrypting, requesting a formal authorization for the action,
signing, or redacting.
An example of management of context-aware policies may

assist a policy administrator in modifying a set of policies and
in evaluating implications of a modi?cation. For example,
when multiple policies apply to a single document, an admin
istrator may be noti?ed of any ambiguities that may be intro
duced by the modi?cation. The administrator may then be
guided to assist in resolving ambiguities, e.g. by being pre
sented with a sequence of choices based on example docu
ments. The results of the administrator’s choices may be
applied to the policies in the form of assigned priorities.
An example of management of context-aware policies as

described herein may enable application of the managed poli
cies so as to enable making a quick and accurate decision
when a user attempts to export data. Thus, policies may be

20

25

30

35

40

45

50

55

60

65

4
evaluated and applied quickly and accurately, e. g. in response
to a user-requested action (e.g. pressing a Send button). Until
the request and data are analyzed in light of the set of policies,
the requested action may be suspended to prevent an unde
sirable consequence (e. g. leaking data). When application of
the set of policies results in a decision, either the originally
requested action, an embellished (e.g. by addition of an addi
tional action, such as encryption) action is executed, or the
action is denied (e.g. with a message sent to the user who
requested the action). A decision regarding the user requested
action may be attained in real/run-time, e. g. without the user
noticing any delay.

FIG. 1 schematically illustrates an example of a system for
managing context-aware policies. Context-aware policy
management system 10 may include one or more computers
(e.g. connected by a network), or may include one or more
modules or applications that may be run on one or more

computers. The computers may be incorporated in another
system, such as a network server or a document management

system. For example, context-aware policy management sys
tem 10 may include one or more computers to be operated by
a policy administrator (herein referring to a person who inter
acts with the system in order to create or manage policies),
and one or more separate computers to be operated by a user
(herein referring to a person who interacts with the system to
request actions to be executed on documents, automatically
causing application of policies).

Context-aware policy management system 10 includes
processor 12 which may operate in accordance with pro
grammed instructions. Processor 12 may communicate with a
memory 14. Memory 14 may include one or more volatile or

non-volatile memory devices, such as a random access

memory (RAM). For example, memory 14 may be used to
store programmed instructions or data for operation of pro
cessor 12, such as one or more sets of policies 26 or one or

more documents 28. Processor 12 may also communicate
with data storage device 16. For example, data storage device
16 may include one or more ?xed or removable non-volatile

devices that may be used for storing data, such as program
ming instructions for operation of processor 12, one or more
sets of policies 26, or one or more documents 28.

Processor 12 may communicate with input/output device
30. Input/output device 30 may include one or more output
devices, which may include, for example, a display or an
audio output device. For example, an output device of input/
output device 30 may be operated to communicate informa
tion to a user, administrator, or operator of context-aware
policy management system 10. Input/output device 30 may
include one or more input devices, such as a keyboard or
keypad, a pointing device, touch screen, a video input device,
or an audio input device. For example, an input device of
input/output device 30 may be operated by a user, adminis
trator, or operator of context-aware policy management sys
tem 10 in order to enter an instruction or selection to proces
sor 12.

Processor 12 may communicate with export devices 20.
For example, export devices may include a network 22, a
printer 24, or a (e.g. non-secure) storage device 25. Processor
12 may be instructed, e.g. via input/output device 30, to
perform an action on document 28 that exports document 28
to export devices 20. Policies 26 may be applied to document
28 in accordance with details of the action and of document
28 (e. g. metadata), as well as content of document 28. Appli
cation of policies 26 may thus resulted in the action being
enable (allowed) or disabled (denied).

US 8,689,281 B2
5

A format of a policy may be formally described in terms of
Boolean expressions. Each policy may be expressed in the
following format:

rule ::=proposediaction A metadata A policyiexpr —>
requirediprotection
Where (examples are given, and other examples are possible):
proposediaction ::= printlemailluploadlsave
metadata ::==printeriIP lemailiaddress luploadiIP lsaveip ath;
corresponding to the respective proposed action)
policyiexpr ::= policyicondition l (policyiexprv policyiexpr) l

(policyiexprApolicyiexpr) l (_, policyiexpr)
policyicondition ::= textitag lregulariexpression
requirediprotection ::= allow [allowiembellishment]

l deny [denyiembellishment]
allowiembellishment ::= loglencryptlsignlredactl (other embellishments
are possible);
and
denyiembellishment ::= loglalertl (other embellishments are possible).

(each

In the expressions, 3:: denotes a de?nition, A conjunc
tion (and), v disjunction (or), and—| negation (not).

In valid rules, the metadata match the proposed action, e.g.
for printing, the metadata must be a printer IP address. The
policy conditions may be respectively strings of one or more
characters or valid regular expressions.
A text_tag or regular_expression may evaluate to true

when the corresponding text is found anywhere in the docu
ment, or may evaluate to true when found in a particular
section of the document (e. g. in a document header, footer, or
title). The text_tag may be further augmented by an error
tolerance, e.g. to accommodate potential errors in spelling.
For example the condition of a policy saveA ‘technical’ Error:
A ‘report’ EWOVIIQallow may be satis?ed when a document
contains a misspelled variant of “technical”, such as
“techical” or “technicl”, with an error distance of one char

acter (one missing or super?uous letter).
The meanings of policy_expr correspond to typical mean

ings in Boolean algebra and policy rules correspond to their
Boolean algebra equivalents. For example, whenever pro
posed_action and metadata match the proposed action on the
document, and policy_expr evaluates to true on the document,
then a speci?ed required_protection may be applied to the
proposed action.

Required protections fall into two broad classes, allow and
deny. The protections may include an optional embellish
ment, such that the protection may be applied along with an
additional feature. For example, allow_encrypt may mean
that the action is allowed; but that the document is to be
encrypted prior to execution of the action. In this example, an
encryption interface may be automatically activated to enable
the user to complete the action.
An example a single policy:

may apply only to a proposed action to save a document
containing the word “classi?ed” outside the ‘C:\encrypted’
directory path, in which case the action is denied (disabled).
For any other proposed action the policy may be ignored as
not applicable. The result of applying such a policy is that any
document containing word “classi?ed” can only be saved into
the folder “C:\encrypted” and nowhere else on the system;
any document that does not contain “classi?ed” can be saved
anywhere.
Two policies may be considered to have compatible pro

tections when the resulting required protections are the same,
apart from embellishments. Two policies may be considered
to have incompatible protections when the resulting required

10

20

25

30

35

40

45

50

55

60

65

6
protections are different, apart from embellishments. In the
event of incompatible protections, relative priorities may be
assigned to each of the two policies with incompatible pro
tections. (The policy with the lower priority may still apply
when the only the lower policy, and not the higher priority
policy, applies to requested action.)

Since policy_condition evaluates as true whenever, e.g. a
corresponding text string is present in the document, it is
possible that more than one context-aware policy may apply
to a requested action on a single document. In the event that
resulting protections from two policies are incompatible, e.g.
one allow and the other deny, only the protection that results
from the highest priority applicable policy is applied.

For example, in the case that a set of policies is modeled
such that it is forbidden to electronically mail (email) any
document containing the name of a new product (e.g. product
NewModel 5N). However, emailing a document that contains
the words “press release” (indicating an explicitly vetted
press release) is allowed. When a document contains both
“press release” and “NewModel 5N”, there is a policy con
tradiction that may be resolved by assigning relative priori
ties.
The policies may be expressed as
emailA ‘NewModel 5N’—>deny
and
emailA ‘press release’—>allow,
with the latter policy being assigned a higher priority than

the former.
Priorities may be assigned to policies may be assigned in

order to avoid con?icts when applying multiple polices. For
example, pairs of policies may be ordered such that whenever
both policies are applicable to a single document, a relative
priority may be assigned to each policy. An ordering may be
drawn in the form of a directed graph. FIG. 2 is a graphical
representation of ordering of a set of policies for an example
of management of context-aware policies.

Vertices p, q, r, s, and t in the graph represent policies. The
protection that results from application of each of the repre
sented policies (allow or deny) is indicated next to each ver
tex. A directed path from one vertex to another is indicated by
an arrow or series of end-to-end arrows that points from the
one vertex to the other. A directed path from a ?rst vertex to a
second vertex indicates that policy that is represented by the
?rst vertex has a higher priority than the policy that is repre
sented by the second vertex.

For the sake of ef?ciency in evaluating multiple policies, it
may be desirable to minimize the number of direct paths (each
corresponding to a decision that must be made, possibly via
policy administrator input).
As an example of management of context-aware policies,

priorities may be assigned to policies of a set using a con
straint programming implementation of policies. A constraint
programming paradigm may be based on separate modeling
and solving stages. During a modeling stage, a problem
domain is described in terms of constraints and variables.
During a solving stage, solutions to the problem domain may
be found.

For example, the problem domain may be modeled using
Boolean satis?ability (SAT) or in another manner. A SAT
problem may consist ofa set ofvariables V:{vl, . . . ,vj}, a set
of literals L each of which is either a variable v or its negation
—. v, and a set ofclauses C:{cl, . . . , ck}, where each clause cl

is a set ofliterals.
A solution to a SAT problem is a set of literals S such that

IeSA I$S and also for each clause C, the intersection of C and
L is non-empty (in other words, a literal from the solution is
found in each clause.

US 8,689,281 B2
7

A clause {In . . . , Ij} behaves like a disjunction II V. . .\/ Ij

because the solution must contain at least one literal from
each clause in order that it be satis?ed. The whole SAT
behaves like a conjunction c 1 /\ /\ ck because all clauses

must be true for the SAT to be satis?ed. When veS, V may be
described as set to true in the solution, and when—| veS, V may
be described as set to false.

For example, a SAT consisting of variables {x, y, Z} and
clauses {{x, —| Z}, {x,Z}, {—1 y, Z}} corresponds to the Boolean
expression (xv—1 Z)A (xv Z)A (—| yv Z). The set S:{x, —| y, Z}
is a solution, because each clause has a literal from S in it. This
corresponds to setting x?rue, y:false, and Z:II'I.1€.

Hence, the modeling stage may consist of generating a SAT
problem that describes a security policy and the solving stage
may include providing this model to a SAT solver. The
attempted action is allowed under the policy if and only if the
SAT solver can ?nd a solution. When a SAT solver based on

a backtracking search terminates, it has either found a solu
tion or proved that none exists.

In practice, a solution may be found quickly due the intel
ligence and ef?ciency of modern solvers, such as the SAT4J
Java library for solving SAT and optimiZation problems.

In modeling security policies as an SAT, each policy may
be assigned a priority value. For example, a higher number
may be used to indicate a higher priority. For example,
assigned priority values may range from 1 to maxprio.

In order to simplify the presentation herein, a policy may
be described using a Boolean expressions involving conjunc
tion (A), disjunction (v), implication (Q), and bi-condi
tional (<—>), and followed by an equivalence operator (E)and
a concrete way of writing down the expression as a clause.

Each fragment of a policy (e.g. a part of a policy excluding
Boolean operations) may be assigned a Boolean variable that
is true if and only if the current document or proposed action
matches it. For example, there may be a variable for each
word appearing in a policy (e.g., “con?dential”) and a vari
able for each proposed action (e.g. “email”). Even if a frag
ment appears in multiple policies, it is assigned only one
variable. For example a policy

emailA addr:*@gmail.com/\ ‘private’Qdeny
may be associated with variables vemm-Z, v* and @gmail.com

Vprivate'
Outcomes allow and deny may be modeled by a variable

vaHOW@i whose value is true if a policy with priority i allows
the corresponding proposed action and false if it disallows the
proposed action. If, however, a policy with priority i does not
yield an outcome of allow or deny, vanow@i may be set to
either true or false.

Each policy may be converted into one or more clauses,
depending on its complexity. For example, the above example
may be converted to

(VemaiZA V*@gmail.com/\ Vprivatea _‘ Vallow@2)
5(_' Ven'lal'l\/_l V*@gmail.comv_' Vpr'ivatevj Vallow@2)
assuming that it has been assigned a priority value of 2.

Hence when the left hand side of the policy evaluates to false
(policy does not apply), vaHOW@2 may be either true or false.
However, if the policy matches, vaHOW@2 must be set to false
or else the clause has no literals in the solution.

In order to eliminate ambiguity that may remain (e.g. a
variable vaHOW@i having a value of false in a solution either
because the policy requires that a corresponding action be
disallowed, or because the conditions of the policy are do not
match the proposed action such that that the value was set to
false arbitrarily), a variable vaPPh-es@i may be assigned to each
priority level i. Variable vaPPh-es@i may evaluate to true if and

20

25

30

35

40

45

50

55

60

65

8
only if a policy with priority i enforces an outcome (e.g. is
applicable). This may be modeled by adding a clause of the
form

A ?nal variable vaHOW may be created to indicate whether or
not the proposed action is allowed. If no rule of the policy set
applies, then vaHOW may be set to a default result of true
(corresponding to allowing the proposed action by default):

i
/\ -' Vapplies®i a Vallow E Vapplies®l V K V Vapplies®max prio V Vallow

If a policy at priority level i applies, and no higher priority
policy applies, the ?nal result may be determined by policies
at priority level i:

max prio

which may be modeled in terms of clauses for an arbitrary
i as

_' Vapplies@iv Vapplies@i+l V' ' 'V Vapplies@maxpri0

V_' Vallow@iv Vallow
and
_‘ Vapplies@iv Vapplies@i+l V' ' ' V Vapplies@maxpriov Vallow@i

V_‘ Vallow
The ?rst of these clauses corresponds to vaHOW being set to

true when the policy at level i applies and determines that the
proposed action is allowed, while every policy with priority
greater than i does not apply. Similarly, The second of these
clauses corresponds to vaHOW being set to false when the
policy at level i applies and determines that the proposed
action is not allowed, while every policy with priority greater
than i does not apply.

The example above, with policies:
emailA ‘NewModel 5N’—>deny (priority 1)
and
email/\ ‘press release’Qallow (priority 2)
may be expressed as clause. The variables used may be

V VNewModeZiSNs Vpressirelease? Vallow@l$ Vallow@2$
vapph-es@l, vapph-es@2. and vaHOW. The clauses may include:
emails

_' VemaiZV? VNewModeZiSNV? Vallow@l
_' Vemail\/_l Vpressireleasev Vallow@2
which model the policies;
_' Ven'lal'l\/_l VNewModeZiSNV Vapplies@l
_‘ Ven'lal'l\/_l Vpressireleasev Vapplies@2
Vemailvj Vapplies@l
VNewModeZiSNVj Vapplies@l
VemaiZV? Vapplies@2
Vpressirelease\/_l Vapplies@2
which ensure that variables v are set correctly; applies@i

Vapplies@lv Vapplies@2v Vallow
which ensures that when no policy applies, the action is

allowed;
' Vapplies@l V Vapplies@2v' Vallow@lv Vallow
' Vapplies@l V Vapplies@2v Vallow@l V' Vallow
which ensure that when only the ?rst policy applies, the

overall outcome is determined by the ?rst policy; and
' Vapplies@2v' Vallow@2v Vallow

which ensure that when only the second policy applies, the
overall outcome is determined by the second policy.

In accordance with this example, if a user attempts to email
a document that contains the text “NewModel 5N” but not

US 8,689,281 B2
9

“press release”, variables vemm-Z and vNewModeLSN may be set
to true, while vpmsjelease may be set to false. The variable
vaHOW is initialized to true so that if the action is allowed a
solution may be found, but if the action is not allowed it may
be impossible to ?nd a solution. An SAT solver may be
instructed to ?nd a solution. Consistency among the clauses
requires that vaHOW has to evaluate to false, in contradiction to
the initial value of true which had been assigned. Therefore,
no solution is possible, and the action is not allowed.
When applying a set of policies to determine whether or not

to enable a proposed action on a document, in accordance
with an example of management of context-aware policies,
the application may be expedited if not all the policies are
loaded into a SAT solver, and if evaluation of some of the
conditions may be avoided. For example, if a condition
involves searching for the presence of a text string in a very
long document, avoiding evaluation of the condition may
expedite a decision process. For example, a decision process
may be fast enough so as to not appreciably delay execution
of an action on a document, e.g. less than 0.25 seconds.

Policies may be loaded one by one, and conditions may be
evaluated until the SAT solver is able to prove what protection
is to be enforced. In this way, only the policies and conditions
that are necessary to get a result may be processed. For
example, policies may be preloaded into memory before the
procedure begins.

FIG. 3 is a ?owchart of an example of a decision process by
application of a set of context-aware policies. It should be
understood with respect to this ?owchart and to other ?ow
charts referred to herein, that the division of a method into
discrete operations represented by blocks of the ?owchart is
for the sake of convenience and clarity only. Alternative divi
sions of the method into individual operations with equivalent
results are possible, and should be understood as representing
other examples of the method. Unless indicated otherwise,
the order of the blocks in the ?owchart has been selected for
the sake of convenience and clarity only. Execution of opera
tions that are represented by blocks of the ?owchart in a
different order or concurrently may yield equivalent results.
Such reordering should be understood as representing other
examples of the illustrated method.

Policy evaluation method 100 may be executed by a pro
cessor of a system for application of context-aware policies,
for example, when an action is proposed to be executed with
regard to a document (block 110).

If policies, remain to be processed, e.g. applied to the
proposed action (block 120), the highest priority remaining
policy may be evaluated with respect to the proposed action,
e.g. loaded into a SAT solver (block 130). Otherwise, a
default decision may be made, e.g. allow the action (block
190), and the process terminated (block 198).

If the policy metadata applies to the proposed action (block
140), and a condition of the policy remains to be evaluated
(block 150), the next condition may be evaluated (block 160).
Otherwise, the set of policies may be examined to determine
if any policies remain to be evaluated (return to block 120).

If upon evaluating the next condition, a decision may be
made, e.g. by a SAT solver (block 170), the decision (e.g. to
allow or disallow the proposed action) may be returned (block
180) and the process ended (block 198). Otherwise, the policy
may be checked to see if a further condition remains to be

evaluated (return to block 150).
In accordance with an example of management of context

aware policies, a policy administrator may be assisted in
de?ning policies such that redundant policies (e. g. existence
of a policy that can be removed or ignored without changing
the protection with regard to any action) may be avoided. For

20

25

30

35

40

45

50

55

60

65

10
example, a policy may be considered redundant if there is
another policy that is applicable to the same requested action,
the policy condition of that other policy covers the same or a
wider class of documents, and satisfaction of the conditions
of both policies results in identical allowances. Avoidance of
redundant policies may expedite policy decisions when
evaluating an allowance of a requested action, may minimize
the set of maintained policies, and may eliminate unnecessary
effort on the part of a policy administrator. Consequences of
adding, editing, or deleting a policy may be made apparent to
the policy administrator. Misunderstanding such conse
quences could result in introducing unintended results that
could result in unintentionally leaking data or in making a
desired and permissible business process impossible to com
plete. A policy administrator may be assisted in assigning
priorities and in comprehending consequences of modi?ca
tions to the policies so as to achieve desired results when
applied.

Such assistance may be referred to collectively as a mod
eling assistant. Thus, a policy administrator may be assisted
in performing actions to add, edit, or remove a policy from the
policy set. For example, a policy administrator may be
restricted to performing a single operation at any one time.
This may avoid concurrent creation of policies with incom
patible protections and unpredictable side-effects.

Operation of a modeling assistant may include summariz
ing effects of policies both individually and in groups.

For example, for a particular policy p, it may be useful to
generate pertinent and exhaustive (all distinct) examples of
actions, metadata, and documents, as well as the protection
that application of p enforces on those documents. An
example may be considered pertinent if it includes key words
or text strings that appear in appropriate ?elds of the policy.
An example may be considered exhaustive if it relates to all
classes of documents to which the policy applies (but not
every document because they could be in?nite in number).

For example, in the case of a policy:
emailA (‘private’v ‘con?dential’)Qallow
pertinent words are “private” and “con?dential”. Since the

condition is a disjunction, the policy applies if either “private”
or “con?dential” or both occur in the document. When the
policy applies, the outcome is allow. Thus the policy applies
to three pertinent classes of document, containing either “pri
vate”, “con?dential”, or “private” and “con?dential”. Thus,
emailing any document that contains the word “private”,
including documents containing the strings such as “private
parking” or “private property” (which may not indicate to a
reader of the document that the contents of the document are
to be kept private), would be allowed.
As another example, it may be useful to generate pertinent

and exhaustive examples for a pair of policies p and q. The
examples may illustrate implications of assigning relative
priorities to p and q and effects of applying the two policies in
combination, and effects of changing a policy.

For example, for the pair of policies:
emailA ‘NewModel’A ‘5N’Qdeny with priority 1, and
emailA (‘declassi?ed’v ‘press release’)—>allow with pri

ority 2, the pertinent words are “NewModel”, “5N”, “declas
si?ed”, and “press release”. The ?rst policy may apply alone
only to a document containing both “NewModel” and “5N”,
with the result deny. There are three examples of both policies
applying (containing “NewModel” and “5N”, as well as one
or both of “declassi?ed”, and “press release”) with the result
allow. There are another three examples of only the second
policy applying (containing one or both of “declassi?ed”, and
“press release”), with the result allow.

US 8,689,281 B2
11

As yet another example, it may be useful to generate per
tinent and exhaustive examples that illustrate effects of apply
ing a policy p, and applying an edited version p' of the same
policy.
As described above, policies may be implemented by mod

eling them with constraints. Outcomes for a pair of policies
may be enumerated by posting them as described and
instructing a SAT solver to generate all solutions such that a
policy applies. An example may be generated for each solu
tion by ?nding all variables that represent policy conditions
and that have been set to true in the solution. An example
document must contain the corresponding terms or strings.
Metadata whose corresponding variables have been set to true
may indicate to which metadata, e.g. which save path or
which email recipients, the example is pertinent. The value of
vaHOW may be checked to determine whether the proposed
action is allowed (true) or denied (false) by that pair of poli
cies. Such an implementation may be entirely decoupled from
the meaning of policies, provided that the policy has been
modeled as SAT clauses. Such an enumeration routine may
simply request all solutions and interpret them. An alternative
approach may require some care to ensure that all examples
were found and that the semantics of policies were taken into
account even in the presence of complex conditions including
arbitrary Boolean operations.
An example of a system for management of context-aware

policies may include a policy editor interface. A policy
administrator interacting with the policy editor interface may
edit policies and assign priorities to the policies. A policy
assistant application or module may also interact with a
policy administrator via the policy editor interface.

For example, a policy editor interface may display the
policies in the form of a table, with the policies ordered in
order of their priorities (e. g. from highest to lowest priority).
The ordering in the table may be equivalent to a preorder
traversal of the priority graph (e.g. as in FIG. 2). In such an
ordering, whenever a there is a path in the priority graph from
policy p to policy q, policy p must appear earlier in the list
than policy q.

FIG. 4 is a ?owchart of an example of a method to manage
a set of context-aware policies. Policy set management
method 200 may be executed, for example, by a processor of
a system for managing context-aware policies.

Policy set management method 200 may be executed when
a policy administrator indicates (e.g. by operating an input
device, e.g. in connection with a user interface to a processor)
of an intention to modify (herein understood as including
creating) a set of context-aware policies.

For example, a policy administrator may input to a proces
sor a modi?cation (such as, for example, addition, deletion, or
editing) of a policy of a set of context-aware policies (block
210). The set of policies may be examined in light of the
modi?cation (block 220). For example, the set of policies
may be examined for overlapping function among policies, or
for redundancies or potential contradictions among the poli
cies of the set. Effects of applying the set of policies after the
modi?cation may be compared to effects of applying the set
of policies prior to the modi?cation.

In some cases, input from the policy administrator may be
required (block 230). One or more examples of documents to
which the set of context-aware policies apply may be gener
ated. The examples and possible outcomes of application of
the set of context-aware policies to each example may be
presented to the policy administrator (e.g. displayed on a
display screen or monitor), and policy administrator input
solicited (block 240). For example, an example and one or

20

25

30

35

40

45

50

55

60

65

12
more possible results of application of the policies to the
example may be displayed in an appropriate tabular or other
form.

For example, a modi?cation may affect the results of
applying the set of policies to a document with a particular
content. An example of the particular content (e.g. a minimal
document that consists entirely of keywords relevant to appli
cation of the policies) may then be presented to the policy
administrator together with an indication of a result of the
modi?cation. Input from the policy administrator may then be
solicited that either accepts or rejects the modi?cation.
As another example, application of two policies of the

modi?ed set to a document with a particular content may
yield mutually incompatible or contradictory results (e.g.
application to a document that contains key words that are
relevant to two policies that yield contradictory results with
regard to allowing or disallowing a proposed action). An
example document that consists of the particular content may
then be generated. Input from the policy administrator may be
solicited to indicate which result is to apply (e.g. allow or
block the relevant proposed action).
The policy administrator input may be incorporated into

the set of policies with regard to the modi?cation (block 250).
For example, if the policy administrator indicates rejection of
a modi?cation, the modi?cation may be ignored and the set of
policies left as before the modi?cation. If the policy admin
istrator indicates acceptance, the modi?ed policy may be
incorporated into the set of policies. In the case of incompat
ible results from application of two policies to a single docu
ment, policy administrator input may incorporated in the
form of a modi?cation of a priority that is assigned to one or
both of the two policies.

If needed, automatic adjustments may be performed to the
set of policies (block 260). For example, if a policy is redun
dant, the redundant policy may be deleted.

After incorporating any policy administrator provided
input or automatic adjustments, the set of policies may be
output (block 270). For example, the set of policies may be
stored in a memory or data storage device for use by a pro
cessor in determining whether or not a proposed action on a

document may be allowed (enabled) or disallowed (disabled).
The set of policies may be utilized by a policy enforcement
mechanism or system.

For example, a policy editor interface and a policy assistant
application may include an add policy function. For example,
an “add policy” function may be implemented as a wizard that
presents a policy administrator with a series of choices. As a
result of the policy administrator’s selection, the application
may determine what the added policy is, how it should inter
act with other policies, and whether the set of policies (or
policy database) can be simpli?ed by removing a newly
redundant policy. However, changes to the set of policies may
not be ?nalized until interaction with the application has been
completed. Thus, the application may be used for exploratory
modeling of policies.

FIG. 5 is a ?owchart of an example of a method for man
aging adding of a policy to a set of context-aware policies.
Policy addition method 300 may be performed when a policy
administrator indicates an intention to add a context-aware
policy to a set of context-aware policies.

Input from a policy administrator may de?ne a new policy
p to be added to a set of policies (block 310). For example, a
user interface may be provided that enables a policy admin
istrator to select or input an action, metadata, conditions, and
protection that de?ne a policy.

For purpose of evaluation, the new policy may be initially
assigned a top priority (block 320).

US 8,689,281 B2
13

The new policy may be compared with existing policies in
the set (if any, block 330). For example, the new policy may
be checked against any existing policies one at a time for
redundancy or potential contradiction.

If application of a pair of policies to a document with
particular content may yield potentially mutually contradic
tory outcomes (e.g. allow or disallow a proposed action) for a
document, policy administrator input may be required (block
340). An example that illustrates the possible outcomes may
be generated and presented to the policy administrator for
input (block 350). For example, two possible outcomes may
be presented to the policy administrator, with the policy
administrator required to select one. The priority of one of the
pair of policies may be adjusted In accordance with policy
administrator input (360). For example, a priority of the
policy whose application yields the outcome selected by the
policy administrator may be assigned a priority that is higher
than the other policy of the pair. The process may continue
until it is determined that all such pairs have been resolved. In
addition, automatic adjustment of the set of policies, such as
removal of a redundant policy, may be performed (block 370).
The policy administrator may be informed prior to such
removal and may be asked to approve, verify, or ratify the
automatic decision. Since policy redundancy could result
from a policy being added or modi?ed mistakenly, informing
the policy administrator of the redundancy may enable the
policy administrator to notice and correct the error.

Finally, if the new policy has not been removed (e.g. as
redundant), policy administrator approval of the addition may
be solicited (block 380). For example, the policy administra
tor may be presented with a generated example that illustrates
the effects of the addition. At this point the policy adminis
trator may approve or reject the addition. The set of policies,
either including or not including the newly added policy, may
then be output.

For example, to illustrate execution of the operations that
are represented by block 330 through block 370, consider a
new policy p, and assigned a priority (initially top priority).
The existing current policy cp may represent a policy of the
set with the next lowest priority after that of p.

If the current priority of p is the lowest priority, no more
comparisons need be made.

If protections of p and cp are the same (e. g. allow or
disallow) but the condition of cp is a more general than that of
p (e.g. cp applies to every proposed action that p applies to),
p may be automatically discarded as redundant.
On the other hand, if the conditions of p are more general

than those of cp, policy cp may be deleted as redundant.
Policy p then replaces cp. Comparison of p with policies of
lower priority than the deleted cp may continue.

If cp and p have compatible protections (e.g. both allow or
disallow) or do not apply to a single proposed action, no
priorities need be examined or modi?ed. Comparison of p
with policies of lower priority than the deleted cp may con
tinue.

If the protections of p and cp are incompatible and the
conditions match exactly the same documents (e.g. one
allows and the other disallows an action under all of the same
conditions), the policy administrator may be asked to select
one of the policies. For example, such a situation may result
from a policy administrator error (e.g. mistake in input). In
this case, the policy administrator may indicate canceling of
the addition, or may reedit the new policy.

If the protections of p and cp are incompatible but the
condition of cp is more general than the condition of p, p may
be left with its current priority and the comparison may ter
minate (no other policies need be compared with p). Thus if

20

25

30

35

40

45

50

55

60

65

14
the condition of p is satis?ed but not the more general condi
tion of cp, the protection of p may be applied. (Were the
priority of p to be less than that of cp, policy p would never be
applied, a situation that may be referred to as “shadowing”.)

In all other cases of incompatible protections, an example
may be generated and presented to the policy administrator.
The example may illustrate the difference in outcome
depending on which of policies p and cp is assigned the higher
priority. The policy administrator may then select one of the
outcomes. If the outcome of applying policy cp is selected,
priorities assigned to p and cp may be interchanged. Com
parison of p with policies of lower priority than the currently
assigned priority of p may continue. On the other hand, if the
outcome of applying policy p is selected, no further compari
son is needed with policies having priorities that are lower
than that of policy cp (priority path relations being transitive).
When soliciting policy administrator approval for that

addition (as in block 380), a ?nal summary may be presented
to the policy administrator. The summary may present gen
erated pertinent and exhaustive examples of what happens
when p and each policy with priority lower than p apply
together. (The policy administrator had previously been pre
sented with examples that illustrate concurrent application of
p and policies with priorities higher than that of p when
necessary.)

For example, consider a set of policies that include two
existing policies, a higher priority policy cpl:
SaveA technicalA reportQallow
and a lower priority policy cp2:
saveA NewModelA SNQdeny.
These policies together mean that technical reports may be

saved but that documents containing the name of a new prod
uct “NewModel 5N” cannot be saved. If the policy adminis
trator wishes to add a special case that press releases should
also be allowed, a policy p may be added:

saveA pressA releaseQallow
No comparison of p with cpl is necessary, as both policies

have the same protection and their relative is order is unim
portant. However the policy administrator may be requested
to select relative priorities p with cp2. For example, a screen
may display an example document containing the words
“NewModel”, “5N”, “press”, and “release” with two possible
outcomes, allow and deny. If the policy administrator selects
allow, policy p is assigned a higher priority than policy cp2.
As another example of managing a set of context-aware

policies, a policy of a set of context-aware policies may be
removed or deleted.

Application of a remaining policy with the same protection
as p may be unaffected by removal of p since even when both
apply, the outcome is unchanged. Similarly, application of a
remaining policy with a higher priority than p may be unaf
fected by removal of p since that policy overrides p.

Application of a remaining policy q with a protection
incompatible with p and with lower priority may be affected
with regard to a document to which both p and q apply.
Pertinent and exhaustive examples of actions whose protec
tions differ before and after removal of p may be generated for
each such policy q. The policy administrator may be
requested to approve or reject removal of p in light of the
examples.

For example, consider a set of policies listed in descending
order of priority: save/\ technicalA report—>allow, save
A pressA release—>allow, and saveA NewModel
A SNQdeny. Removal of the ?rst policy may not affect the
second policy, since they both have the same protection.
However, application of the third policy to a document con
taining both “technical report” and “NewModel 5N” is

US 8,689,281 B2
15

affected. Saving such a document was allowed prior to
removal of the ?rst policy, and is not allowed afterward. For
example, the policy administrator may be presented with an
example of saving a document that contains both “technical
report” and “NewModel 5N”, with the outcome being dis
played as blocked. The policy administrator may indicate
approval (e. g. by selecting an appropriate screen control, e.g.
labeled “Finish”) or rejection (e.g. by selecting a screen con
trol labeled “Cancel”).
As another example of managing a set of context-aware

policies, a policy of a set of context-aware policies may be
edited. Editing a policy may be decomposed into separate
operations of deletion of the existing policy followed by
addition of the edited policy.

Thus, a policy administrator may interact with a user inter
face that enables editing a policy. Examples may be generated
that both illustrate the effects of the policy before and after
editing. These examples may be presented to the policy
administrator for approval or rejection. In addition, examples
may be generated illustrating effects on documents of assign
ing various priorities to pairs of mutually contradictory policy
outcomes. The policy administrator may indicate the pre
ferred outcome.

For example, a policy administrator may correct an exist
ing policy saveA techicalA reportQallow that includes a
spelling error. The policy administrator may edit the policy to
correct to: saveA technical/\reportQallow. An example in
this case may include showing a generated document con
taining a string “techical report” as being allowed by the
policy prior to editing. Another example may include show
ing a generated document containing a string “technical
report” as being allowed by the policy after editing. The
policy administrator may then approve or reject the change.
A SAT solver may be used to implement features of an

assistant (e.g. wizard) for assisting in adding, removing, and
editing policies. For example, a SAT solver may be used to
determine whether a policy p has a more general, more spe
ci?c, or equal condition as compared to another policy q. A
SAT solver may implement this functionality.

For example, in order to show that p is at least as general as
q, an SAT solver may be instructed to ?nd a counterexample
(e. g. a document to which q applies but p does not). This may
involve posting both p and q as clauses with variables
vp_applies and vq_applies that represent whether p and q apply,
respectively. If the SAT solver cannot ?nd a solution with
vp_applies set to false and vq_aPPh-es set to true, p may have been
proved to be at least as general as q.

In order to show that p is at least as speci?c as q, q may be
proved to be at least as general as p as described above. In
order to show that p has the same condition as q, p may be
proved to be at least as general as q, and q at least as general
as p.

In accordance with examples of management of context
aware policies, a computer program application stored in
non-volatile memory or computer-readable medium (e.g.,
register memory, processor cache, RAM, ROM, hard drive,
?ash memory, CD ROM, magnetic media, etc.) may include
code or executable instructions that when executed may
instruct or cause a controller or processor to perform methods
discussed herein, such as an example of a method for man
agement of context-aware policies.

The computer-readable medium may be a non-transitory
computer-readable media including all forms and types of
memory and all computer-readable media except for a tran
sitory, propagating signal. In one implementation, external
memory may be the non-volatile memory or computer-read
able medium.

20

25

30

35

40

45

50

55

60

65

16
We claim:
1. A method comprising:
obtaining input to modify a policy of a set of context-aware

document policies, the policy of the set being applicable
to a requested action on a document so as to indicate

allowability of the requested action based at least on
satisfaction of a condition of the policy that relates to a
content of the document, and when a plurality of policies
of the set are applicable to the requested action on the
document, allowability of the requested action being
determined by allowability that is indicated by applica
tion of the applicable policy with a highest priority;

modifying the policy based on the input and comparing the
modi?ed policy with an other policy of the set;

in response to a determination that the comparison indi
cates the modi?ed policy and the other policy are appli
cable to a single requested action on a single document,
automatically ensuring that the set of policies remains
self-consistent,

wherein automatically ensuring that the set of policies
remains self-consistent comprises:
generating an example of performance of the single

requested action on an example of a document; and
in response to a determination that the comparison indi

cates mutually contradictory allowability, ensuring
that different priorities are assigned to the modi?ed
policy and the other policy by:
receiving a user input that indicates a preferred

allowability based on the example of performance;
and

assigning a higher priority to either the modi?ed
policy or the other policy based on the user input.

2. The method of claim 1, wherein automatically ensuring
that the set of policies remains self-consistent further com
prises

ensuring that either the modi?ed policy or the other policy
is deleted from the set if the comparison indicates that
the modi?ed policy or the other policy is redundant.

3. The method of claim 2, wherein ensuring that either the
modi?ed policy or the other policy is deleted from the set
comprises automatically deleting whichever of the modi?ed
policy and the other policy includes a condition that is less
general.

4. The method of claim 1, wherein the input comprises an
indication to add a policy to the set, to delete a policy from the
set, or to edit a policy of the set.

5. The method of claim 1, wherein comparing the modi?ed
policy and the other policy comprises calculating Boolean
satis?ability for the modi?ed policy and the other policy
expressed as Boolean clauses.

6. The method of claim 1, wherein the requested action is
selected from a group of actions consisting of: printing, sav
ing, emailing, and uploading.

7. The method of claim 6, wherein the requested action
comprises metadata including a printer address, an email
address, an upload address, or a save path.

8. The method of claim 1, wherein the condition comprises
inclusion of a character string within the document.

9. The method of claim 1, wherein generating the example
of performance comprises:

automatically generating another document;
applying the set of policies to the another document; and
outputting the another document and an outcome of the

application of the set of policies to the another docu
ment.

US 8,689,281 B2
17

10. A non-transitory computer readable medium having
stored thereon instructions that When executed by a processor
cause the processor to:

obtain input to modify a policy of a set of context-aware
document policies, the policy of the set being applicable
to a requested action on a document so as to indicate
allowability of the requested action based at least on
satisfaction of a condition of the policy that relates to a
content of the document, and When a plurality of policies
of the set are applicable to the requested action on the
document, allowability of the requested action being
determined by allowability that is indicated by applica
tion of the applicable policy With a highest priority;

modify the policy based on the input and compare the
modi?ed policy With an other policy of the set;

in response to a determination that the comparison indi
cates the modi?ed policy and the other policy are appli
cable to a single requested action on a single document,
automatically ensure that the set of policies remains
self-consistent,

Wherein to automatically ensure that the set of policies
remains self-consistent includes to:
automatically generate an example of performance of

the single requested action on an example of a docu
ment; and

in response to a determination that the comparison indi
cates mutually contradictory allowability, ensure that
different priorities are assigned to the modi?ed policy
and the other policy, Wherein the instructions are to
cause the processor to:

receive a user input that indicates a preferred allowabil
ity based on the example of performance; and

assign a higher priority to either the modi?ed policy or
the other policy based on the user input.

11. The non-transitory computer readable medium of claim
10, Wherein

in response to a determination that the comparison indi
cates that the modi?ed policy or the other policy is
redundant, the instructions are further to cause the pro
ces sor to ensure that the redundant policy is deleted from
the set.

12. The non-transitory computer readable medium of claim
11, Wherein to ensure that either the modi?ed policy or the
otherpolicy is deleted from the set, the instructions are further
to cause the processor to automatically delete Whichever of
the modi?ed policy and the other policy includes a condition
that is less general.

13. The non-transitory computer readable medium of claim
10, Wherein the input comprises an indication to add a policy
to the set, to delete a policy from the set, or to edit a policy of
the set.

20

25

30

35

40

45

18
14. The non-transitory computer readable medium of claim

10, Wherein the requested action is selected from a group of
actions consisting of: printing, saving, emailing, and upload
ing.

15. A system to modify a policy of a set of context-aware
document policies, comprising:

a processor and a memory, the memory comprising
machine-readable instructions that When executed,
cause the processor to:

obtain input to modify a policy of a set of context-aware
document policies, the policy of the set being appli
cable to a requested action on a document so as to

indicate allowability of the requested action based at
least on satisfaction of a condition of the policy that
relates to a content of the document, and When a
plurality of policies of the set are applicable to the
requested action on the document, allowability of the
requested action being determined by allowability
that is indicated by application of the applicable
policy With a highest priority;

modify the policy based on the input and compare the
modi?ed policy With an other policy of the set;

in response to a determination that the comparison indi
cates the modi?ed policy and the other policy are
applicable to a single requested action on a single
document, automatically ensure that the set of poli
cies remains self-consistent,

Wherein to ensure that the set of policies remains self
consistent includes to:
automatically generate an example of performance of

the single requested action on an example of a docu
ment; and

in response to a determination that the comparison indi
cates mutually contradictory allowability, ensure that
different priorities are assigned, Wherein the proces
sor is to:

receive a user input that indicates a preferred
allowability based on the example of performance;
and

assign a higher priority to either the modi?edpolicy or
the other policy based on the user input.

16. The system of claim 15, Wherein to generate the
example of performance, the processor is to:

automatically generate another document;
apply the set of policies to the another document; and
output the another document and an outcome of the appli

cation of the set of policies to the another document.

* * * * *

USOO8689281B2

(12) Unlted States Patent (10) Patent N0.: US 8,689,281 B2
Balinsky et a]. (45) Date of Patent: Apr. 1, 2014

(54) MANAGEMENT OF CONTEXT-AWARE 8,561,148 B2 * 10/2013 Hayton ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 726/4
POLICIES 2006/0048224 A1* 3/2006 Duncan et al. . .. 726/22

2008/0256593 A1* 10/2008 Vinberg et al. 726/1
_ 2008/0263625 A1 10/2008 GomeZ et a1.

(75) IHVBIIIOFSI Helen Ballllsky, CardlffWaleS (GB); 2009/0033990 A1 * 2/2009 Matsugashita 358/115
Neil Moore, Glasgow (GB); Steven J. 2009/0157620 A1 * 6/2009 Kim et a1. 707/3

- ' 2009/0157804 A1 6/2009 McColgan et al.
SlmSke’ Fort conms’ CO (Us) 2009/0171960 A1 7/2009 Katzir

. 2009/0328130 A1 12/2009 H it t l.
(73) ASSlgneei Herett-PaCkal‘d Development 2011/0099603 A1 * 4/2011 ,,,,,,,,,,,,,,,,,,, ,, 726/1

Company, LP, Houston, TX (US) 2012/0131164 A1 * 5/2012 Bryan et a1. 709/223

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

Pawnt is eXtended or adjuswd under 35 Agrawal et al., “Policy-Based Management of Networked Comput
U.S.C. 154(1)) by 17 days. ing Systems”, Oct. 2005, pp. 69-75.*

(21) Appl. No.: 13/286,095 * cited by examiner

(22) Filed: Oct. 31, 2011 Primary Examiner * Taghi Arani
Assistant Examiner * Thaddeus Plecha

(65) Prior Publication Data

Us 2013/0111544 A1 May 2, 2013 (57) ABSTRACT
A method includes obtaining input to modify a policy of a set

51 Int, C], of context-aware document olicies. A 0110 of the set is P P y
H04L 29/06 (200601) applicable to a requested action on a document so as to indi

cate allowabili of the re uested action based at least on (52) US. C]. W q
USPC ____________________ __ 726/1. 726/4. 726/27. 707/694 satisfaction of a condition of the policy that relates to a con

(58) Field of Classi?cation 5621th ’ ’ tent of the document. When a plurality of policies of the set
USPC 726/1 are applicable to the requested action on the document,
S allowability of the requested action is determined by the

ee app Icanon e or comp ete seam lsmry' allowability that is indicated by application of the applicable

(56) References Cited policy with a highest priority. The modi?ed policy is com

U.S. PATENT DOCUMENTS

6,327,618 B1 * 12/2001 Ahlstrom et a1. 709/223

7,072,956 B2 7/2006 Parupudi et a1.
7,516,475 B1 * 4/2009 Chen et a1. 726/1

310

pared with another policy of the set. If the comparison indi
cates the modi?ed policy and the other policy are applicable
to a single requested action on a single document, the set of
policies is automatically ensured to remain self consistent.

16 Claims, 5 Drawing Sheets

Obtain new administratorr-de?ned

300\
320

policy

Initially assign top priority to new

330

policy

Compare new policy with existing
policies in set

340

350

370

380

390

Potentially incompatible policy pair?
No

Yes

Sonar administrator Input with regard
to generated sxample(s)

Adjust priorities in accordance with
administrator input

Automatically adjust set of policies as
needed

Solicit administrator approval of
addition

Output set of policies

