
US 20180107560A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0107560 A1
MOORE et al . (43) Pub . Date : Apr . 19 , 2018

(54) EXTENSIBLE FILE SYNCHRONIZATION (57) ABSTRACT

(71) Applicant : ADOBE SYSTEMS
INCORPORATED , San Jose , CA (US)

(72) Inventors : Neil MOORE , Edinburgh (GB) ;
Adrian O ' LENSKIE , West Lothian
(GB) ; Peter BROWN , Dunblane (GB)

(21) Appl . No . : 15 / 293 , 109
(22) Filed : Oct . 13 , 2016

Systems and methods provide custom synchronization pro
cedures in file synchronization . A primary agent is used to
monitor for changes , create synchronization plans to syn
chronized changes , and execute the synchronization plan .
The primary agent , however , interacts with one or more
separate custom agents to customize the synchronization
plans . One exemplary technique involves monitoring for
local changes to a first copy of a file tree and updates from
another computing device regarding remote changes to a
second copy of the file tree . When a change to either copy
is identified , a synchronization plan for the change is created
based on a default synchronization procedure . The synchro
nization plan is sent to a custom agent for customization .
The custom agent creates the custom synchronization plan
by modifying the synchronization plan and sends the custom
synchronization plan to the primary agent . The custom
synchronization plan is then executed by the primary agent .

Publication Classification
(51) Int . Ci .

G06F 11 / 14 (2006 . 01)
G06F 1730 (2006 . 01)

(52) U . S . CI .
CPC G06F 11 / 1451 (2013 . 01) ; G06F 2201 / 80

(2013 . 01) ; G06F 11 / 1464 (2013 . 01) ; G06F
17 / 30581 (2013 . 01)

102a

User Device
Synchronization App 201

? ? ????????? 202 First Copy Of File Tree

Pomary Agent 03
enorm

Custom Agent

wwwwwwwwwwwwwwwwwwwwwwwwwwwww RUM

Creative App any - 205 108
BULUKU JUURI

Custorm Agent 152046 106 waarna
Swwwwwwwwwww

Creative Apparatus
wwwwwwwww

Network
Synchronization Engine

mp210
Second (Cloud) Capy 01

fle Tree
1020 A NANANANA

wwwrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrn

User Device

Synchronization App
VANAN

Third Copy Of Fie Tree
- - - - - - - - - -

UUUUUU
???????????

Primary Agent
Ousiom Agent

233

1214
DU

????????? . ?

.

33 % ISUNOJ

M

M

M MMMMMMMMMMMMMMYY

US 2018 / 0107560 A1

www ???
???????????

Wwwwwwwwwwwwwwwwww
wwwwwwwwwwwwww

-

-

-

- - -

- - - -

- -

-

-

- - - - -

- - - - - -

VIVO D31048
www
99 %

VIVO OWLSXUOM VII W2220V * *

VIVO SOLIN NOUVnddy

wwwwwwwwwwwwwwwwwwwwwww .

ANDWWOO

mereceremeewerwe
crirererririririrird

wwwwwwwwwm
m

www
.

*

* * * * * * *

* *

*

* * * * * * * * *

*

*

WWW0300
007

ww

W0100

N222PWAPW2P
7222

WOX
87

MYYW
wwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
WWW

OSP

13

LULUULUUL

VIVO INW39NYW SIMON

3800 WWNOLW8300 8350

0201

???

72722272222222PPPPPPPPrrrrrrrrrrrrrrrrrrrrrrrrrr7777777777777777777
OCCACCOUCOUCOUCOUCOUCOUCOUCOUCUCCOUCOCCOUcucc . WWW

??????????????????????????
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxx

MWWWWWWW

10 71 VIVOVIN SUS $

wwwww

19999999999999999
9

. 79 .

VWO INNOV

rrrrrrrrrr

borrrrrrrrrrrrrrrrrrrrrrrrr
SOROSTAATIOTASOIOS

OCI

2012112200Perner8101214172121 HIINANINH247 .

NINJINNINN .

VINNIININPWYDAY 396

SWW29000 NOUVnddy
MOET 821

VIVO WW # 908d NO mnddy - 06

UNO 39VOLS VWO

??

MIMO 8350
Q10

???

wwwwwwwwwwwww
w

A

LALALALALAMLAMA PUPII
III ccccccccccrrrrrrrrrrrrrrrrrrrrrr

err

ZII

INIONS WOUVOS

Apr . 19 , 2018 Sheet 1 of 7

3NI9N3DdW

NON3 INWO000

WWWWW

ww
M

www

.

*

*

*

*

*

*

*

wwwwwwwwww

wwwwwwwwwwwwwwww
WWWWAY .

wwwwwwwwwwwwwwwwwww

w

Torrr

www

NION3 INOS
mm

WWWWWWWWW000404

YYYYYYYYYYYYY 3NON

3NIIN

3N9N3

3N9N3

WOWWO NOUZIVNOS : 30 SD

INWWWW

794 SV

NOUVndd 1981 :

SIMON

NON INWOWWWW

3NON INWIN

INION

OVOINNOO NOnddv

IN399WNWW 8350

971 Shad 3A11939

2

2

:

77

VEL 1

wwwwwwwwwww

3NISN3 NOULUINOWIONIS

* * 21

wwwwwwwwwwwwwwwwwww
?? s
P : / ISI / IP / PPP2IPS / 2 2 / II / APP / IPI / III / III / II / III / ISI / II / II / III / 2

2 / II / APP / IP / PR / I / L SILIPI / II / / ISI / II / II / IP : / / PIX / Artif : / / PPI / PR / I / LI ?

VCOT

YYY

st

Patent Application Publication

XUOMEN

Wwwwwww

WWWWWWWWWWWWWW
4 .

4

i

N NOUnder

www

com

NOUVndov
?????????????????????????

UULUUGUAGUAGLULEGUGUGLIELUX
11

NOV

100
8350 NOI *

tot

30030350

*

2222222222222PWXN2222w2w2N222
- -

- -

-

-

-

-

- -

Home 001

102a

User Device Synchronization App

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Patent Application Publication

First Copy Of File Tree Primary Agent

1203
Custom Agent

ning r205

108

Creative App
Custom Agent

2040

concernen

901

Creative Apparatus

132

Synchronization Engine
210

Notwork

wo

Second (Cloud) Copy Of Fie Tree

Apr . 19 , 2018 Sheet 2 of 7

1026

User Device Synchronization App

ya 21

Third Copy Of File Tree

1 233

Primary Agent

7214
Custom Agent

US 2018 / 0107560 A1

FIGURE 2

Patent Application Publication Apr . 19 , 2018 Sheet 3 of 7 US 2018 / 0107560 A1

300 min

301
Monitor local changes to a first copy of a file tree

and updates from another computing device
regarding remote changes to a second copy of the

file tree

302
Idenofy a change to the first copy of the file tree or

the second copy of the file tree

m

Create a synchronization plan for the change based
on a default synchronization procedure

304
Send the synchronization plan to a custom agent

for customization

pup
305

Receive a custom synchronization plan from the
custom agent pPPPPPPPPPPPPPP

306
Execute the custom synchronization plan to

synchronize the first copy of the file tree and the
second copy of the file tree .

FIGURE 3 1

402

Collaboration diagram for synd customization

1028

Local Computer

mere

Patent Application Publication

Create RO

4 report error to the client , but don ' t do any actions because the pian has been cancelled

Create ROluseriile . pdf

204a

203

Primary Agent

Custom Agent

2 : send sync plan - -

3 : return updated synch plan

403 Create RO Error , read only

Apr . 19 , 2018 Sheet 4 of 7

2 . create RO / useriile pdf

Create RO / userfile . pdf
Error , read only

men 101

1 : Create ROI

m

US 2018 / 0107560 A1

FIGURE 4

LLL

~

wwwwwwwwwwwwwwwwwwwwwwwwwwwww rrrrrrrrrrrrrrrr
Delegate C

- 102a

Creative App Delegate B Delegate A juefy Lewd IN - PPPPPP rrrrrrrrrrrrrrrrrrrrrrrrrrr ??

First Copy Of Fle Tree
ddy vo jezivoiyouÁS ????

OLOG 501b 6109 ZOZ

20 206

UUUUUUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUUUUUUU

FIGURE 5 Network ' s
Bek

106

800

2011 1 ?????????????????????????????????? wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww Second (Cloud) Copy Of
Synchronization Engine 121

OLZL S { 1 } 124

wwwwwwwwwwwwwwwwwww 7132
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

US 2018 / 0107560 A1 Apr . 19 , 2018 Sheet 5 of 7 Patent Application Publication

Patent Application Publication Apr . 19 , 2018 Sheet 6 of 7 US 2018 / 0107560 A1

600

601
Receive registration by a delegate to control

Synchronization a portion of a tile tree

Monitor local changes to a first copy of a file tree
and updates from another computing device

regarding remote changes to a second copy of the
file tree

603
Identify a change to the first copy of the file tree

or the second copy of the file tree

604
Determine that the delegate is responsible for
synchronization related to the change based on

tle ??? " ? RRRRRRRPPPPPPPPPPPPPPPPPPPPPPPP
pppppp

Send a notification of the change to the delegate

LLL

RPPPPPPPPP 606
Execute a delegate - specified synchronization

plan for the change to synchronize the first copy
of the file tree and the second copy of the file

Y

ww 1 www csoport
>

US 2018 / 0107560 A1

er rar

er ren non rrrrrrrrrrrr

rr

T . TT TT er

en TT or

TTT nr

. Ter Ter Ter Terror rrr .

Tror er ren rrrrrrrrrrrr on rent on

Apr . 19 , 2018 Sheet 7 of 7

JOSS800ld

Memory
ZOL

abejois
COZ

10 Interface
VOL

wwwwwwwwww www

CO2

Computing Device

Communication interface

OOZ

wuuuuuuu

www

FIGURE 7
W

?????????????

901

Patent Application Publication

no no no

no no

no

no no

no no no

non no

nec non non non

n
o

non me non n

e non non

mano
or a

men
e non

US 2018 / 0107560 A1 Apr . 19 , 2018

EXTENSIBLE FILE SYNCHRONIZATION

TECHNICAL FIELD
[0001] This disclosure relates generally to computer
implemented techniques and more particularly relates to
improving the efficiency and effectiveness of computing
systems used to synchronize files on multiple computing
devices and in cloud computing systems .

BACKGROUND

[0004] There are several disadvantages to implementing
custom synchronization procedures from synchronization
procedure sources by directly modifying the synchroniza
tion agent . Such modifications require programming time
and expertise with the synchronization system ' s configu
ration and programming language . Moreover , the synchro
nization procedure sources are generally external to the
development of the file synchronization system . The syn
chronization procedures can come from a synchronization
procedure source such as an application that uses a different
programming language than the synchronization system or
from a separate business entity or team . Implementing
custom synchronization procedures in such circumstances
can require the involvement of multiple people having
different backgrounds , entity affiliations , team affiliations ,
and technical experience . The complexity and multiple
people involved in such customization makes it inefficient .
In addition , licensing restrictions can prevent incorporating
code from another application (e . g . , an application that uses
open source code) into a content synchronization system to
implement custom procedures . Thus , generally , existing
techniques for implementing custom synchronization pro
cedures from synchronization procedure sources by directly
modifying the file synchronization system ' s agent is often
burdensome , impractical , infeasible , and / or impossible .

SUMMARY

[0002] File synchronization is the task of keeping a file
tree of files and folders on one computing device the same
as a file tree on another computing device , as changes are
made to the copies of the file tree on either of the computing
devices . For example , a file tree can be stored on both a
client device and a cloud server and synchronized between
the two computing devices . Typically , synchronization is
achieved by a synchronization agent running on a computing
device . The agent monitors local changes and receives
updates from the other computing device to synchronize the
file tree copies . Acting on this information , the agent will
effect uploads and downloads to bring the copies of the file
tree into line on the computing devices . File synchronization
functions are generally provided by a single agent using a
one - size - fits - all synchronization algorithm . However , the
files and folders that are synchronized are often used by
multiple applications and for various purposes that may
require synchronization procedures that differ from the
standard ones provided by the algorithm . Applications and
businesses processes that are used in coordination with the
file synchronization system have their own requirements for
synchronization in particular circumstances . For example ,
these synchronization procedure sources (i . e . , the applica -
tions and business processes) can require custom synchro
nization procedures for specific file types , specific files ,
and / or specific folders . For example , a specific application ,
such as a video editing application , may require synchro
nizing changes of its files on - demand rather than using the
standard algorithm ' s as - soon - as - possible procedure . As
another example , particular parts of a file tree may be
synchronized in a unique way , for example , based on a
procedure that only downloads and uploads files under a
particular size .
[0003] Existing systems implement custom synchroniza
tion procedures by directly modifying the synchronization
algorithm used by the synchronization agent to account for
each added custom synchronization procedure . If there is a
variation in procedure for a particular folder , e . g . , one - way
synchronization , then this is activated either by incorporat
ing specific logic into the source code or by creating
configuration options specifically to handle the particular
variation . Similarly , in order to achieve file synchronization
with special handling for particular areas of the file tree ,
existing systems will combine unrelated logic into the single
agent . For example , selective synchronization is a custom
synchronization procedure in which particular parts of the
file tree are not synchronized either up (i . e . , from client to
server) or down (i . e . , from server to client) . The implemen
tation logic is different from conventional synchronization in
which the file tree is fully downloaded / uploaded . Selective
synchronization has been implemented by combining logic
specific to selective synchronization into the agent .

[0005] Systems and methods disclosed herein provide
custom synchronization procedures in file synchronization .
In certain techniques , a primary agent monitors for changes ,
creates synchronization plans to synchronized changes , and
executes the synchronization plans . The primary agent inter
acts with separate custom agents to customize the synchro
nization plans . One exemplary technique involves monitor
ing for local changes to a first copy of a file tree and
monitoring for updates from another computing device
regarding remote changes to a second copy of the file tree .
When a change to the first copy of the file tree or the second
copy of the file tree is identified , a synchronization plan for
the change is created by the primary agent based on a default
synchronization procedure . The synchronization plan is sent
to a custom agent for customization . The custom agent
creates the custom synchronization plan by modifying the
synchronization plan and sends the custom synchronization
plan to the primary agent . The custom synchronization plan
is then executed by the primary agent .
[0006] Certain techniques of the invention additionally or
alternatively provide delegated synchronization procedures
in a file synchronization system . One exemplary technique
involves receiving registration by a delegate to control
synchronization of a portion of a file tree . The primary agent
keeps track of multiple delegates registering for various
portions of the file tree . Local changes to a first copy of a file
tree and updates from another computing device regarding
remote changes to a second copy of the file tree are moni
tored . When a change to the first copy of the file tree or the
second copy of the file tree is identified , the delegate that is
responsible for synchronization related to the change is
determined based on the registration . A notification of the
change is then sent to that delegate . Based on receiving the
notification , the delegate develops a delegate - specified syn
chronization plan for the change and instructs the primary

US 2018 / 0107560 A1 Apr . 19 , 2018

agent to execute the delegate - specified synchronization plan .
The plan is executed to synchronize the first copy and
second copy of the file tree .
[0007] These illustrative features are mentioned not to
limit or define the disclosure , but to provide examples to aid
understanding thereof . Additional embodiments are dis
cussed in the Detailed Description , and further description is
provided there .

BRIEF DESCRIPTION OF THE FIGURES

[0008] These and other features , embodiments , and advan
tages of the present disclosure are better understood when
the following Detailed Description is read with reference to
the accompanying drawings .
10009] FIG . 1 is a diagram of an environment in which one
or more embodiments of the present disclosure can be
practiced .
[0010] FIG . 2 illustrates exemplary components of the
environment of FIG . 1 for extending file synchronization
with custom synchronization procedures .
[0011] FIG . 3 illustrates is a flow chart illustrating an
exemplary technique for extending a file synchronization
with custom synchronization procedures .
[0012] FIG . 4 illustrates is a flow chart illustrating an
exemplary technique for file synchronization with custom
synchronization procedures .
[0013] FIG . 5 illustrates exemplary components of the
environment of FIG . 1 for extending file synchronization
with delegated synchronization control .
[0014] FIG . 6 is exemplary flow chart illustrating an
exemplary technique for delegating synchronization proce
dures .
[0015] FIG . 7 is a block diagram depicting an example
hardware implementation .

device to identify an event that may require synchronization .
The primary agent creates a representation of a synchroni
zation plan based on a default synchronization procedure .
The primary agent sends the synchronization plan to the
custom agents for customization . Each of the custom agents
determines whether to respond with changes to the synchro
nization plan . For example , a custom agent can be config
ured to identify synchronizations that involve “ read only ”
files and modify synchronizations involving those files .
Thus , if that custom agent receives a synchronization plan
from the primary agent that relates to a “ read only ” file
synchronization , that custom agent will modify the synchro
nization plan to customize it and return the customized
synchronization plan to the primary agent for execution . The
primary agent receives the customized synchronization plan ,
checks for validity , and executes the plan .
100191 Certain techniques of the invention implement cus
tom synchronization procedures by delegating synchroniza
tion tasks to be controlled by separate delegate agents rather
than by the primary agent . The delegates register for par
ticular portions of the synchronized file tree , receive noti
fications when there are events that may require synchroni
zation to their respective portions of the synchronized file
tree , and execute the appropriate updates according to their
own custom synchronization procedures . The use of sepa
rate delegates enables easier custom synchronization proce
dure implementation , as well as parallel and prioritized
synchronization control . Certain techniques address poten
tial conflicts , for example , when an event could potentially
impact files in portions of the synchronized file tree con
trolled by multiple delegates . For example , a move event
that involves two delegates is separated into a delete event
(handled by one of the delegates) and a create event (handled
by the other delegate) .
[0020] Techniques of the invention provide numerous
advantages over prior techniques . Techniques of the inven
tion provide more efficient and easier ways to extend a file
synchronization system with custom agent synchronization
procedures from multiple and differing synchronization pro
cedure sources . The custom synchronization procedures can
be created by different companies or teams . The custom
synchronization procedures can additionally or alternatively
be implemented using different technologies that may be
impossible to combine or uneconomical to combine , e . g . ,
JavaScript and C + + . The custom synchronization proce
dures can additionally or alternatively be implemented at
different times . The separation of the custom agents and
delegates from the file synchronization system ' s primary
agent enables easier , more efficient implementation of cus
tom synchronization procedures . The separation also allows
custom synchronization procedures to be used in circum
stances in which it was previously impossible , for example ,
where license requirements would have prevented directly
modifying the file synchronization system ' s agent . In addi
tion , the custom agents and delegates of the techniques of
the invention can be implemented on separate devices and
controlled remotely from client devices . This allows bug
fixes and procedure changes to be made at any time , rather
than requiring waiting for client - side file synchronization
software to be updated .
[0021] As used herein , the phrase " computing device ”
refers to any electronic component , machine , equipment , or
system that can be instructed to carry out operations . Com
puting devices will typically , but not necessarily , include a

DETAILED DESCRIPTION
[0016] As discussed above , existing techniques for imple
menting custom synchronization procedures from synchro
nization procedure sources by directly modifying the file
synchronization system ' s agent is often burdensome ,
impractical , infeasible , and / or impossible . The invention
provides improved techniques for implementing file syn
chronization using a file synchronization system .
[0017] Certain techniques of the invention provide an
extensibility point in a file synchronization system . This
allows one or more synchronization procedure sources (i . e . ,
applications and business processes) to implement custom
synchronization procedures for certain files , file types , fold
ers , etc . The file synchronization system includes a primary
agent that is configured to perform default synchronization
procedures . The primary agent , however , also communicates
with separate , custom agents to identify changes to the
default procedures . These custom agents can be provided by
a file synchronization procedure source (e . g . , application ,
business unit , team , etc .) that are separate from the file
synchronization system and / or can be written in program
languages different from that of the file synchronization
system and one another .
[0018] The following provides an example technique for
using custom agents separate from the primary agent to
implement custom synchronization procedures . In this
example technique , the primary agent monitors local
changes and receives updates from the other computing

US 2018 / 0107560 A1 Apr . 19 , 2018

processor that is communicatively coupled to a memory and
that executes computer - executable program code and / or
accesses information stored in memory or other storage .
Examples of computing devices include , but are not limited
to , desktop computers , laptop computers , server computers ,
tablets , telephones , mobile telephones , televisions , portable
data assistant (PDA) , e - readers , portable game units , smart
watches , etc .
[0022] As used herein , the phrase “ file tree ” refers to an
organization structure that relates one or more files and / or
folders to one another . Files store electronic content as
individually accessible units and folders identify groups of
files and other folders . An example file tree includes a root
folder that identifies zero and / or more files and zero or more
sub - folders , with each sub - folder identifying zero or more
files and zero or more sub - sub - folders , etc .
[0023] As used herein , the phrase “ file synchronization
system ” refers to computing components used to synchro
nize a file tree on multiple computing devices . File synchro
nization can be one - way (i . e . , updated file trees files and
folders updated from a source to another computing device)
or two - way (i . e . , updated file tree files and folders copied in
both directions between the computing devices) .
[0024] As used herein , the phrase " synchronization plan ”
refers to a set or ordering of one or more actions to be
executed to accomplish a synchronization . A " default ” syn
chronization is a synchronization plan that will be executed
if a custom synchronization plan does not replace it . A
" custom ” synchronization plan is a plan that implements a
custom synchronization procedure , for example , by modi
fying a default synchronization plan based on a custom
synchronization procedure . A synchronization plan can be
represented using a directed acyclic graph (DAG) .
[0025] As used herein , the phrase “ directed acyclic graph
(DAG) ” refers to is a graph of nodes and edges that does not
include directed cycles , i . e . , there is no way to go from a first
node through the edges and other nodes to get back to the
first node . Equivalently , a DAG is a directed graph that has
a topological ordering , a sequence of the nodes such that
every edge is directed from earlier to later in the sequence .
A synchronization plan can be encoded as a directed acyclic
graph (DAG) where each node represents a synchronization
action such as upload , download or create directory . The
synchronization executor ' s job is to process this DAG in a
topologically sorted order , so that if there is an edge from
node A (action A) to node B (action B) , then action A must
be done before action B .
[0026] As used herein , the phrase " primary agent ” refers
to one or more processes performed locally by a computing
device to manage the synchronization of a copy of a file tree
on the computing device with copies on one or more other
computing devices . A primary agent can , but need not
necessarily , monitor local and remote copies of file trees for
changes , create default synchronization plans , communicate
with custom agents to obtain custom synchronization plans ,
execute default and / or custom synchronization plans , track
delegates , delegate synchronization activities to delegates ,
and / or report on synchronization progress . In one example ,
the primary agent is implemented as a primary daemon ,
running the background on a computing device .
[0027] As used herein , the phrase " custom agent ” refers to
one or more processes performed separately from the pri
mary agent by the same or another computing device to use
a custom synchronization procedure to provide a custom

synchronization plan . A custom agent can implement a
custom synchronization procedure provided by a synchro
nization procedure source that is different from a source that
provides default synchronization procedures . A custom
agent can be , but is not necessarily , implemented in a
different programming language than the programming lan
guage used to implement the primary agent .
[0028] As used herein , the phrase " synchronization pro
cedure source ” refers to a supplier (e . g . , person , team ,
business unit , business entity , application , etc .) of a syn
chronization procedure . For example , a developer or devel
opment team creating a file synchronization system can be
the synchronization procedure source for default synchro
nization procedures of the system . In this example , custom
synchronization procedures are provided by other synchro
nization procedure sources , including but not limited to
different developers , development teams , business units ,
business entities , applications , etc .
[0029] As used herein , the phrase " delegate ” refers to one
or more processes performed separately from the primary
agent on the same or another computing device to synchro
nize a designated portion of a file tree .
[0030] FIG . 1 is a diagram of an environment 100 in which
one or more embodiments of the present disclosure can be
practiced . The environment 100 includes one or more user
devices , such as a user device 102 A up to a user device
102N . Each of the user device is connected to a creative
apparatus 108 via a network 106 . A user of the user devices
uses various products , applications , or services supported by
the creative apparatus 108 via the network 106 . The user
devices correspond to various users . Examples of the users
include , but are not limited to , creative professionals or
hobbyists who use creative tools to generate , edit , track , or
manage creative content , end users , administrators , users
who use document tools to create , edit , track , or manage
documents , advertisers , publishers , developers , content
owners , content managers , content creators , content view
ers , content consumers , designers , editors , any combination
of these users , or any other user who uses digital tools to
create , edit , track , or manage digital experiences .
[0031] Digital tool , as described herein , includes a tool
that is used for performing a function or a workflow elec
tronically . Examples of the digital tool include , but are not
limited to , content creation tool , content editing tool , content
publishing tool , content tracking tool , content managing
tool , content printing tool , content consumption tool , any
combination of these tools , or any other tool that can be used
for creating , editing , managing , generating , tracking , con
suming or performing any other function or workflow
related to content . Digital tools include the creative appa
ratus 108 .
[0032] Digital experience , as described herein , includes
experience that can be consumed through an electronic
device . Examples of the digital experience include content
creating , content editing , content tracking , content publish
ing , content posting , content printing , content managing ,
content viewing , content consuming , any combination of
these experiences , or any other workflow or function that
can be performed related to content .
0033] Content , as described herein , includes electronic
content . Examples of the content include , but are not limited
to , image , video , website , webpage , user interface , menu
item , tool menu , magazine , slideshow , animation , social
post , comment , blog , data feed , audio , advertisement , vector

US 2018 / 0107560 A1 Apr . 19 , 2018

graphic , bitmap , document , any combination of one or more
content , or any other electronic content .
[0034] Examples of the user devices include , but are not
limited to , a personal computer (PC) , tablet computer , a
desktop computer , a processing unit , any combination of
these devices , or any other suitable device having one or
more processors . Each user device includes at least one
application supported by the creative apparatus 108 .
[0035] . It is to be appreciated that following description is
now explained using the user device 102 A as an example
and any other user device can be used .
[0036] Examples of the network 106 include , but are not
limited to , internet , local area network (LAN) , wireless area
network , wired area network , wide area network , and the
like .
[0037] The creative apparatus 108 includes one or more
engines for providing one or more digital experiences to the
user . The creative apparatus 108 can be implemented using
one or more servers , one or more platforms with correspond
ing application programming interfaces , cloud infrastructure
and the like . In addition , each engine can also be imple
mented using one or more servers , one or more platforms
with corresponding application programming interfaces ,
cloud infrastructure and the like . The creative apparatus 108
also includes a data storage unit 112 . The data storage unit
112 can be implemented as one or more databases or one or
more data servers . The data storage unit 112 includes data
that is used by the engines of the creative apparatus 108 .
[0038] A user of the user device 102A visits a webpage or
an application store to explore applications supported by the
creative apparatus 108 . The creative apparatus 108 provides
the applications as a software as a service (SaaS) , or as a
standalone application that can be installed on the user
device 102A , or as a combination . The user creates an
account with the creative apparatus 108 by providing user
details and also by creating login details . Alternatively , the
creative apparatus 108 can automatically create login details
for the user in response to receipt of the user details . In some
embodiments , the user is also prompted to install an appli
cation manager . The application manager enables the user to
manage installation of various applications supported by the m

creative apparatus 108 and also to manage other function
alities , such as updates , subscription account and the like ,
associated with the applications . The user details are
received by a user management engine 116 and stored as
user data 118 in the data storage unit 112 . In some embodi
ments , the user data 118 further includes account data 120
under which the user details are stored .
10039] The user can either opt for a trial account or can
make payment based on type of account or subscription
chosen by the user . Alternatively , the payment can be based
on product or number of products chosen by the user . Based
on payment details of the user , a user operational profile 122
is generated by an entitlement engine 124 . The user opera
tional profile 122 is stored in the data storage unit 112 and
indicates entitlement of the user to various products or
services . The user operational profile 122 also indicates type
of user , i . e . free , trial , student , discounted , or paid .
10040] The user management engine 116 and the entitle
ment engine 124 can be one single engine performing the
functionalities of both the engines .
[0041] The user then installs various applications sup
ported by the creative apparatus 108 via an application
download management engine 126 . Application installers or

application programs 128 present in the data storage unit 112
are fetched by the application download management engine
126 and made available to the user directly or via the
application manager . In one embodiment , all application
programs 128 are fetched and provided to the user via an
interface of the application manager . In another embodi
ment , application programs 128 for which the user is eligible
based on user ' s operational profile are displayed to the user .
The user then selects the application programs 128 or the
applications that the user wants to download . The applica
tion programs 128 are then downloaded on the user device
102A by the application manager via the application down
load management engine 126 . Corresponding data regarding
the download is also updated in the user operational profile
122 . An application program 128 is an example of the digital
tool . The application download management engine 126
also manages process of providing updates to the user device
102A .
[0042] Upon download , installation and launching of an
application program , in one embodiment , the user is asked
to provide the login details . A check is again made by the
user management engine 116 and the entitlement engine 124
to ensure that the user is entitled to use the application
program . In another embodiment , direct access is provided
to the application program as the user is already logged into
the application manager .
[0043] The user uses one or more application programs
128 to create one or more projects or assets . In addition , the
user also has a workspace within each application program .
The workspace , as described herein , includes setting of the
application program , setting of tools or setting of user
interface provided by the application program , and any other
setting or properties specific to the application program .
Each user has a workspace . The workspace , the projects or
the assets are then stored as application program data 130 in
the data storage unit 112 by a synchronization engine 132 .
The synchronization engine 132 also includes a font engine
134 for synchronizing or storing fonts included as part of the
application program data 130 . The application program data
130 can be specific to the user or can be shared with other
users based on rights management . The rights management
is performed by a rights management engine 136 . Rights
management rules or criteria are stored as rights manage
ment data 138 in the data storage unit 112 .
[0044] The application program data 130 includes one or
more assets 140 . The assets 140 can be a shared asset which
the user wants to share with other users or which the user
wants to offer on a marketplace . The assets 140 can also be
shared across multiple application programs 128 . Each asset
includes metadata 142 . Examples of the metadata 142
include , but are not limited to , font , color , size , shape ,
coordinate , a combination of any of these , and the like . In
addition , in one embodiment , each asset also includes a file .
Examples of the file include , but are not limited to , an image
144 , text 146 , a video 148 , a font 150 , a document 152 , a
combination of any of these , and the like . In another
embodiment , an asset only includes the metadata 142 .
[0045] The application program data 130 also include
project data 154 and workspace data 156 . In one embodi
ment , the project data 154 includes the assets 140 . In another
embodiment , the assets 140 are standalone assets . Similarly ,
the workspace data 156 can be part of the project data 154
in one embodiment while it may be standalone data in other
embodiment .

US 2018 / 0107560 A1 Apr . 19 , 2018

[0046] The user can have one or more user devices . The
application program data 130 is accessible by the user from
any device , i . e . including the device which was not used to
create the assets 140 . This is achieved by the synchroniza
tion engine 132 that stores the application program data 130
in the data storage unit 112 and makes the application
program data 130 available for access by the user or other
users via any device . Before accessing the application pro
gram data 130 by the user from any other device or by any
other user , the user or the other user may need to provide
login details for authentication if not already logged in . Else ,
if the user or the other user are logged in then a newly
created asset or updates to the application program data 130
are provided in real time . The rights management engine 136
is also called to determine whether the newly created asset
or the updates can be provided to the other user or not . The
workspace data 156 enables the synchronization engine 132
to provide same workspace configuration to the user on any
other device or to the other user based on the rights man
agement data 138 .
[0047] In various embodiments , various types of synchro
nization can be achieved . For example , the user can pick a
font or a color from the user device 102A using a first
application program and can use the font or the color in a
second application program on any other device . If the user
shares the font or the color with other users , then the other
users can also use the font or the color . All this synchroni
zation can happen in real time . Similarly , synchronization of
any type of the application program data 130 can be per
formed .
[0048] In some embodiments , the user interaction with the
application programs 128 is also tracked by an application
analytics engine 158 and stored as application analytics data
160 . The application analytics data 160 includes , for
example , usage of a tool , usage of a feature , usage of a
workflow , usage of the assets 140 , and the like . The appli
cation analytics data 160 can include the usage data on a per
user basis and can also include the usage data on a per tool
basis or per feature basis or per workflow basis or any other
basis . The application analytics engine 158 embeds a piece
of code in the application programs 128 that enables an
application program to collect the usage data and send it to
the application analytics engine 158 . The application ana
lytics engine 158 stores the usage data as the application
analytics data 160 and processes the application analytics
data 160 to draw meaningful output . For example , the
application analytics engine 158 can draw an output that the
user uses “ Tool 4 ” maximum number of times . The output
of the application analytics engine 158 is used by a person
alization engine 162 to personalize tool menu for the user to
show “ Tool 4 ” on top . Other types of personalization can
also be performed based on the application analytics data
158 . In addition , the personalization engine 162 can also use
the workspace data 156 or the user data 118 including user
preferences to personalize one or more application programs
128 for the user .
[0049] In some embodiments , the application analytics
data 160 includes data indicating status of project of the user .
For example , if the user was preparing an article in a digital
publishing application and what was left was publishing the
prepared article at the time the user quit the digital publish
ing application then the application analytics engine 158
tracks the state . Now when the user next opens the digital
publishing application on another device then the user is

indicated the state and options are provided to the user for
publishing using the digital publishing application or any
other application . In addition , while preparing the article
recommendation can also be made by the synchronization
engine 132 to incorporate some of other assets saved by the
user and relevant for the article . Such recommendation can
be generated using one or more engines as described herein .
10050] The creative apparatus 108 also includes a com
munity engine 164 which enables creation of various com
munities and collaboration among the communities . A com
munity , as described herein , includes a group of users that
share at least one common interest . The community can be
closed , i . e . limited to a number of users or can be open , i . e .
anyone can participate . The community enables the users to
share each other ' s work and comment or like each other ' s
work . The work includes the application program data 140 .
The community engine 164 stores any data corresponding to
the community , such as work shared on the community and
comments or likes received for the work as community data
166 . The community data 166 also includes notification data
and is used for notifying other users by the community
engine in case of any activity related to the work or new
work being shared . The community engine 164 works in
conjunction with the synchronization engine 132 to provide
collaborative workflows to the user . For example , the user
can create an image and can request for some expert opinion
or expert editing . An expert user can then either edit the
image as per the user liking or can provide expert opinion .
The editing and providing of the expert opinion by the expert
is enabled using the community engine 164 and the syn
chronization engine 132 . In collaborative workflows , each of
a plurality of users are assigned different tasks related to the
work .
[0051] The creative apparatus 108 also includes a market
place engine 168 for providing marketplace to one or more
users . The marketplace engine 168 enables the user to offer
an asset for selling or using . The marketplace engine 168 has
access to the assets 140 that the user wants to offer on the
marketplace . The creative apparatus 108 also includes a
search engine 170 to enable searching of the assets 140 in
the marketplace . The search engine 170 is also a part of one
or more application programs 128 to enable the user to
perform search for the assets 140 or any other type of the
application program data 130 . The search engine 170 can
perform a search for an asset using the metadata 142 or the
file .
[0052] The creative apparatus 108 also includes a docu
ment engine 172 for providing various document related
workflows , including electronic or digital signature work
flows , to the user . The document engine 172 can store
documents as the assets 140 in the data storage unit 112 or
can maintain a separate document repository (not shown in
FIG . 1) .
[0053] It is to be appreciated that the engines and working
of the engines are described as examples herein and the
engines can be used for performing any step in providing
digital experience to the user .

Extensible File Synchronization Using Custom Agents
[0054] FIG . 2 illustrates exemplary components of the
environment of FIG . 1 for extending file synchronization
with custom synchronization procedures . In FIG . 2 , a file
tree is synchronized between two user devices 102a , 102b
and on the creative apparatus 132 . The user device 102a

US 2018 / 0107560 A1 Apr . 19 , 2018

includes a synchronization app 201 that includes a first copy
of the file tree 202 . The creative apparatus 108 has synchro
nization engine 132 that maintains a second (cloud) copy of
the file tree 210 , and the user device 102b includes a
synchronization app 211 that includes a third copy of the file
tree 212 . These copies of the file tree 201 , 210 , 212 are
synchronized by components on the user devices 102a , 102b
as described below .
[0055] The user device 102a includes a primary agent 203
and custom agents 204a , 204b . The primary agent 203
manages the synchronization of the first copy of a file tree
202 on the computing device 102a with the second (cloud)
copy of the file tree 210 on the creative apparatus 108 . In this
example , the primary agent 203 monitors the first copy of a
file tree 202 and receives updates regarding changes to the
second copy of file tree 210 , creates default synchronization
plans , communicates with custom agents 204a , 204b to
obtain custom synchronization plans , executes default and /
or custom synchronization plans , and / or reports on synchro
nization progress . Custom agents (not shown) accessed by
primary agent 203 to customize synchronization can addi
tionally or alternatively be located on creative apparatus 108
or on another remote server (not shown) .
[0056] The user device 102b includes a primary agent 233
and custom agent 214 . The primary agent 233 manages the
synchronization of the third copy of a file tree 212 on the
computing device 102b with the second (cloud) copy of the
file tree 210 on the creative apparatus 108 . In this example ,
the primary agent 233 monitors the third copy of a file tree
212 and receives updates regarding changes to the second
copy of file tree 210 , creates default synchronization plans ,
communicates with custom agent 214 to obtain custom
synchronization plans , executes default and / or custom syn
chronization plans , and / or reports on synchronization prog
ress .
[0057] FIG . 3 illustrates an exemplary technique 300 for
extending a file synchronization with custom synchroniza
tion procedures . The exemplary technique 300 can be imple
mented by a primary agent such as the primary agent 203
communicating with a custom agent such as the custom
agent 204a of FIG . 2 , although other devices and configu
rations can also be implemented .
[0058] Technique 300 involves monitoring local changes
to a first copy of a file tree and updates from another
computer device regarding remote changes to a second copy
of the file tree , as shown in block 301 . In one example , the
primary agent monitors the local copy of the file tree for
changes by detecting creation , deletion , and update events to
files and folders saved locally in memory on the computing
device .
[0059] Technique 300 further involves identifying a
change to the first copy of the file tree or the second copy of
the file tree , as shown in block 302 . Thus , when a user opens
a file , makes a change to the file , and then saves the file
locally , the primary agent identifies the change . Similarly , if
the user creates a new file or folder , deletes a file or folder ,
or moves a file or folder locally , the primary agent identifies
the change . When the second copy of the file tree is changed ,
for example , when a separate user on another device makes
a change that is synchronized with the cloud server , the
primary agent receives a notification that the cloud server
has been changed and identifying the nature of the change .
[0060] Technique 300 further involves creating a synchro
nization plan for the change based on a default synchroni

zation procedure , as shown in block 303 . The synchroniza
tion plan provides an ordering of one or more actions to be
executed to accomplish synchronization based on the
change . The synchronization plan initially is a default syn
chronization plan based on a default synchronization pro
cedure , i . e . , a procedure that will be used to synchronize
changes unless replaced with a custom synchronization
procedure . Default synchronization procedures are specified
by a default synchronization procedure source such the
business entity or team that implements the file synchroni
zation system . The default synchronization procedures can ,
but do not necessarily , provide the most common synchro
nization actions to perform to synchronize a change based
on the type of the change . For example , the most common
action when new version of a file is saved locally may
involve uploading the new version of the file to replace the
prior version of the file on the cloud server .
[0061] The synchronization plan can be encoded as a
directed acyclic graph (DAG) . In such a DAG , each node
represents a synchronization action such as upload , down
load , create directory , rename directory , etc . A DAG pro
vides a topologically sorted order for executing synchroni
zation actions . For example , if there is an edge from action
A to action B , then A must be done before B .
[0062] Technique 300 further involves sending the syn
chronization plan to a custom agent for customization , as
shown in block 304 . The custom agent can be local on the
same machine or stored on a remote server . Sending the
synchronization plan can include encoding the synchroni
zation plan (e . g . , a DAG) in a suitable format . For inter
process communication (IPC) the format could be a serial
ized text format . For an in - process plugin , the format could
be a graph of in - memory objects . Sending the synchroniza
tion plan to the custom agent can involve sending it over a
public network such as the Internet to a cloud service for
customization .
[0063] The custom agent receives and amends the syn
chronization plan to create a custom synchronization plan .
For example , the custom agent can create the custom syn
chronization plan by deleting a node or reversing a direction
of an upload or download action in the synchronization plan .
The custom agent can create the custom synchronization
plan using a custom synchronization procedure specified by
a custom synchronization procedure source different from
the default synchronization procedure source . Thus , devel
opers , teams , business units , business entities , and others
who are separate from the general file synchronization
implementation can extend and customize the file synchro
nization capabilities without having to enlist the help of file
synchronization system implementers . Rather the file syn
chronization is extensible and can be easily extended using
a custom agent that is separate from the file synchronization
general implementation and default procedures . Thus , the
custom synchronization procedure source can be a second
business entity or team that implements an application or
business process separate from implementation of the file
synchronization system . Moreover , the custom agent can be
implemented in a second programming language different
from a first programming language in which the file syn
chronization general implementation and / or default proce
dures are implemented . Multiple custom procedures can
come from different sources and be implemented in different
programming languages . This provides additional flexibility
and efficiency .

US 2018 / 0107560 A1 Apr . 19 , 2018

[0064] Technique 300 further involves receiving a custom
synchronization plan from the custom agent , as shown in
block 305 . After receiving the custom synchronization plan ,
the custom synchronization plan is checked for validity . For
example , if the synchronization plan represented a DAG , the
primary agent checks to ensure that the custom synchroni
zation plan still represents a DAG . The primary agent further
checks that dependencies of operations have not been
wrongly deleted , that the files / folders being uploaded / down
loaded do exist on the server and / or local side , and that the
operations specified can be executed successfully , e . g . that
no files are being creating using a system - reserved name ,
etc .
[0065] Technique 300 further involves executing the cus
tom synchronization plan to synchronize the first copy of the
file tree and the second copy of the file tree , as shown in
block 306 . For example , if a file needs to be uploaded to the
server to replace an older version of the file on the server , the
primary agents sends the file to the server with instructions
for replacing the older version of the file with the new file .
[0066] The technique 300 of FIG . 3 can involve the use of
multiple custom agents . In such cases , the primary agent can
contact an appropriate custom agent for customization in a
variety of ways . In one example , the primary agent keeps
track of all custom agents . When the primary agent identifies
a change , it sends a synchronization plan for the change to
all of the custom agents . If any of the custom agents is
configured to customize synchronization for that type of
change , the respective custom agent responds with a custom
synchronization plan . If none of the custom agents responds
within a predetermined amount of time , the primary agent
proceeds with executing the (default) synchronization plan .
[0067] Certain techniques of the invention involve a pri
mary agent identifying multiple changes to a first copy of the
file tree or a second copy of the file tree , sending synchro
nization plans for the multiple changes to multiple custom
agents , receiving custom synchronization plans from the
multiple custom agents , and executing the custom synchro
nization plans . In this way , the file synchronization system
is extended with custom synchronization procedures for
different circumstances based on custom procedures that can
be provided by multiple , different custom procedure sources .
0068] FIG . 4 illustrates is a flow chart illustrating an
exemplary technique for file synchronization with custom
synchronization procedures . User 401 first creates a folder /
RO / and then creates a file userfile . pdf . The primary agent
203 identifies these changes and sends a synchronization
plan 402 to custom agent 204a . The synchronization plan
402 includes a DAG with a " create / RO ” node linked to a
subsequent “ create / RO / userfile . pdf " node . The custom agent
204a analyzes the synchronization plan 402 and applies a
custom synchronization procedure . In this case , the custom
agent determines that creating the folder is not allowed
because it is read only and the custom synchronization
procedure for read only folders is to not allow creation of the
folders . Accordingly , the custom agent deletes the nodes and
produces custom synchronization plan 403 , which essen
tially will perform no change on the server based on the local
change and instead result in notifying the user that the local
change was not allowed and / or cannot be synchronized with
the server . The custom synchronization plan 403 is then
returned to the primary agent 203 for execution .
100691 Generally , a custom agent can identify a circum
stance to customize a change based on identifying an

attribute of a file , a folder , an organizational structure of a
file tree , or any other appropriate characteristic associated
with the change . Thus , in addition to the providing a custom
agent to provide custom procedures for synchronizing read
only folders and files , custom agents can be used for images ,
videos , files being editing by more than one user , and / or any
other files of folders that have particular characteristics . In
one example , custom procedures are provided for files that
are used by a particular creative application . For example ,
custom synchronization procedures can be used to synchro
nize content files that are used in a web page creation
application , e . g . , applying special synchronization rules for
images , videos , and other elements of web pages being
created . In another example , custom components can be
used to enforce naming requirements . Thus a custom agent
can receive a change , check to see if the change involves a
name that violates a naming condition , and , if so , customize
the synchronization plan accordingly . In another example ,
custom synchronization rules can be provided for collabo
rations . Collaborations include one or more folders that
more than one user can work together on . Unlike for
conventional folder synchronization in which when a user
deletes a folder or file locally the folder or file is deleted on
cloud server too , a special synchronization rule for collabo
rations can specify that a locally deleted folder or file is to
remain on the server for use by others in the collaboration .
As another example , a corporate entity using the file syn
chronization system may use a custom synchronization
procedure to enforce special requirements around data secu
rity , for example , to prevent files containing the word
“ private ” from being uploaded to a cloud server .
[0070] The custom agents in the above examples are
implemented separately from the primary agents . Thus ,
rather than using a single primary agent that encapsulates all
of the logic for custom synchronization procedures , the logic
of these procedures is separated . Splitting the logic up into
multiple programs makes the software engineering simpler
and more efficient . Moreover , the custom agents can be
tailored to address particular circumstances and thus com
partmentalize the synchronization process in an organized
and easy to change and extend manner .

Extensible File Synchronization Using Delegates
[0071] FIG . 5 illustrates exemplary components of the
environment of FIG . 1 for extending file synchronization
with delegated synchronization control . In FIG . 5 , a file tree
is synchronized between the user devices 102a and the
creative apparatus 132 . The user device 102a includes a
synchronization app 201 that includes a first copy of the file
tree 202 . The creative apparatus 108 has synchronization
engine 132 that maintains a second (cloud) copy of the file
tree 210 . These copies of the file tree 201 , 210 , are synchro
nized by components on the user devices 102a as described
below .
[0072] The user device 102a includes a primary agent 203
and delegates 501a - c . The primary agent 203 manages the
synchronization of the first copy of a file tree 202 on the
computing device 102a with the second (cloud) copy of the
file tree 210 on the creative apparatus 108 . In this example ,
the primary agent 203 monitors the first copy of a file tree
202 and receives updates regarding changes to the second
copy of file tree 210 , identifies which delegates are regis
tered to synchronize particular changes based on delegate
registration , and delegates responsibility for synchronizing

US 2018 / 0107560 A1 Apr . 19 , 2018

changes to the delegates . The primary agent 203 and del
egates 501a - c communicate via any IPC mechanism , e . g . ,
remote procedure call (RPC) , datagram , custom protocol ,
HTTP , etc . , or via any other appropriate communication
technique .
[0073] In this example , the primary agent 203 orchestrates
synchronization by using delegates 501a - c that control dif
ferent portions of the file tree . The delegates 501a - c are able
to implement custom synchronization procedures because
they are separate from the primary agent 203 . Moreover , use
of the delegates 501a - c makes synchronization quicker ,
more efficient , and avoids bottlenecks . Each of the delegates
501a - c receives information about changes to its respective
portion of the file tree and uses custom procedures for
changes in that portion . The delegates 501a - c create custom
synchronization plans for changes and instruct the primary
agent 203 to execute the plans . Unlike custom agents
described above with respect to FIGS . 2 - 3 , the delegates
501a - c actually control the synchronization rather than
simply amending a synchronization plan . The delegates
501a - c are making the synchronization decisions without
oversight from the primary agent 203 , which simply
executes the synchronizations as instructed by the delegates
501a - c .
[0074] FIG . 6 is exemplary flow chart illustrating an
exemplary technique 600 for delegating synchronization
procedures . The exemplary technique 600 can be imple
mented by a primary agent such as the primary agent 203
communicating with delegates 501a - c of FIG . 5 , although
other devices and configurations can also be implemented .
[0075] Technique 600 involves receiving registration by a
delegate to control synchronization of a portion of a file tree ,
as shown in block 601 . In an implementation involving
multiple delegates , multiple registrations can be received
and tracked using a list or other appropriate storage tech
nique . The multiple delegates can register for different
portions of the file tree . For example , one delegate can
register for all folders and files with folder A , another
delegate can register for all folders and files within Folder B ,
etc . A portion of a file tree can thus be a folder and all of its
sub - folders and files . In another example , a portion of a file
tree is files of a particular type . In this example , a delegate
can be registered to synchronize particular file types . As a
specific example , a delegate can be registered to synchronize
video files using custom synchronization procedures that are
appropriate for video files .
[0076] In one technique , when synchronization is com
menced by the primary agent , delegates have a limited
amount of time to register to control a part of the file tree .
Once synchronization begins running , delegates can no
longer register and the files that have not been delegated are
synced using default synchronization procedures by the
primary agent . Delegates provide a list of paths that they
wish to control , or a list of file types , or other criteria . The
primary agent will check before registration is complete that
no file is controlled by two delegates and resolves any
conflicts . When a delegate is in control of a portion of the file
tree , the primary agent will not download or upload any
changes in those files until instructed to do so by the
appropriate delegate .
[0077] Technique 600 further involves monitoring
changes to a first copy of a file tree and updates from another
computing device regarding remote changes to a second
copy of the file tree , as shown in block 602 . In one example ,

the primary agent monitors the local copy of the file tree for
changes by detecting creation , deletion , and update events to
files and folders saved locally in memory on the computing
device .
[0078] Technique 600 further involves identifying a
change to the first copy of the file tree or the second copy of
the file tree , as shown in block 603 . Thus , when a user opens
a file , makes a change to the file , and then saves the file
locally , the primary agent identifies the change . Similarly , if
the user creates a new file or folder , deletes a file or folder ,
or moves a file or folder locally , the primary agent identifies
the change . When the second copy of the file tree is changed ,
for example , when a separate user on another device makes
a change that is synchronized with the cloud server , the
primary agent receives a notification that the cloud server
has been changed and identifying the nature of the change .
[0079] Technique 600 further involves determining that
the delegate is responsible for synchronization related to the
change based on the registration , as shown in block 604 . For
example , if the change affects a file with a folder in the
portion of the file tree for which the delegate is responsible ,
the primary agent determines that the delegate is responsible
for synchronization related to the change .
[0080] The primary agent can employ conflict resolution
procedures to address particular circumstances in which a
change affects multiple portions of a file tree , both within
and beyond the scope of a delegate ' s responsibility . For
example , if the primary agent determines that a change
requires deleting or moving a parent folder of the portion
registered to the delegate , where the delegate is not respon
sible for the parent folder , the primary agent can delete or
move the parent folder and the portion within it registered to
the delegate . This avoids a potential conflict . In another
example , the primary agent identifies that a change requires
moving a file or folder from a first portion of the file tree for
which the delegate registered to a second portion of the file
tree for which a second delegate registered . In this circum
stance , the primary agent breaks the move up into a deletion
and a creation that can be separately handled by the different
delegates each handling the operation relevant to its own
portion of the file tree .
[0081] Technique 600 further involves sending a notifica
tion of the change to the delegate , as shown in block 605 .
Technique 600 further involves executing a delegate - speci
fied synchronization plan for the change to synchronize the
first copy of the file tree and the second copy of the file tree ,
as shown in block 606 .
10082] Extensible file synchronization techniques that use
delegates can employ various mechanisms to provide effi
cient , fast , and manageable synchronization . A first mecha
nism is the delegate registration process discussed above
with respect to block 601 that makes it easy for delegates to
be added to the system .
[0083] A second mechanism is the change monitoring
process discussed above with respect to blocks 602 and 603
that identifies changes and responsible delegates . In change
monitoring , the primary agent will receive updates about
changes to the file tree on other computers , as well as
monitor for changes on the local disk . Notifications about
delegated files are sent to delegates so that they will have the
information necessary to keep the files in synchronization
according to their own business logic .
10084] A third mechanism is a conflict resolution process
discussed above with respect to block 604 for handling

US 2018 / 0107560 A1 Apr . 19 , 2018

potential conflicts between delegates and the primary agent
and / or themselves . In handling of conflicting operations ,
certain operations that happen locally (on the local machine)
and remotely (on another machine synchronizing the same
file tree) may affect the primary agent and / or multiple
delegates . The techniques can ensure that each delegate only
downloads and uploads changes to their own portion of the
synchronization tree . To do so , the primary agent must
enforce rules about what happens in conflict situations . The
rules are designed to ensure that each conflicting operation
is handled by exactly one agent , with other agents being
informed where necessary .
[0085) A fourth mechanism is an execution mechanism . In
one implementation , the primary agent provides IPC facili
ties allowing the delegates to set up transfers for the file tree
portions that each controls . The transfers cause downloads
from other computers synchronizing the file tree or cause
uploads to other computers synchronizing the file tree . Once
the delegate processes the changes that have been received
and made a decision about what actions it wants to perform
locally and on the server . The delegate encodes the actions
and hands it to primary agent to be executed . This keeps the
execution procedures in a single location at the primary
agent . In an alternative implementation , delegates perform
the some or all of the synchronization actions themselves .
[0086] A fifth mechanism provides for aggregation of
synchronization progress and state . In one implementation ,
the primary agent reports state , e . g . actively synchronizing ,
or progress , e . g . synchronized 1 file of N files , for display on
the user device and / or to a synchronization administrator . In
certain techniques of the invention , delegates provide their
own state and progress to the primary agent , which will
aggregate the information into a single status report dis
played or otherwise provided to the user .
[0087] There are numerous advantages to being able to
delegate to delegates rather than have a single process
perform all synchronizations , including custom synchroni
zation procedures . First , there is a static advantage . Essen
tially the use of delegates makes it easy to implement
different synchronization procedures for different circum
stances . If there is a desire for a policy to not synchronize
particular file types , the synchronization of those file types
can be easily controlled using a targeted delegate . Similarly ,
if there is a desire for a policy to not synchronize files older
than six months , the synchronization of those file types can
be easily controlled using another targeted delegate . Second
there are non - static advantages . For example , an organiza
tion is able to use synchronization procedures to control
when information is synchronized to user devices . As a
specific example , in compliance practices , certain tasks need
to be performed every monthly , quarter , every six months ,
etc . Synchronization procedures implemented via delegates
can enable the company to use synchronization to push
content onto employees machines that are relevant to those
particular compliance or other business activity at the rel
evant times .
[0088] Delegates can also be used to enforce a particular
order of synchronization actions . For example , a particular
type of creative content can include a key file and linked
files . The creative content uses a compound file format in
which the order of synchronization needs to be specified ,
e . g . , the document with the layout should synchronized first ,
etc .

[0089] Exemplary Computing Environment
[0090] Any suitable computing system or group of com
puting systems can be used to implement the techniques and
methods disclosed herein . For example , FIG . 7 is a block
diagram depicting examples of implementations of such
components . The computing device 70 can include a pro
cessor 71 that is communicatively coupled to a memory 72
and that executes computer - executable program code and / or
accesses information stored in memory 72 or storage 73 . The
processor 71 may comprise a microprocessor , an applica
tion - specific integrated circuit (“ ASIC ”) , a state machine , or
other processing device . The processor 71 can include one
processing device or more than one processing device . Such
a processor can include or may be in communication with a
computer - readable medium storing instructions that , when
executed by the processor 71 , cause the processor to perform
the operations described herein .
10091] The memory 72 and storage 73 can include any
suitable non - transitory computer - readable medium . The
computer - readable medium can include any electronic , opti
cal , magnetic , or other storage device capable of providing
a processor with computer - readable instructions or other
program code . Non - limiting examples of a computer - read
able medium include a magnetic disk , memory chip , ROM ,
RAM , an ASIC , a configured processor , optical storage ,
magnetic tape or other magnetic storage , or any other
medium from which a computer processor can read instruc
tions . The instructions may include processor - specific
instructions generated by a compiler and / or an interpreter
from code written in any suitable computer - programming
language , including , for example , C , C + + , C # , Visual Basic ,
Java , Python , Perl , JavaScript , and ActionScript .
[0092] The computing device 70 may also comprise a
number of external or internal devices such as input or
output devices . For example , the computing device is shown
with an input / output (“ I / O ”) interface 74 that can receive
input from input devices or provide output to output devices .
A communication interface 75 may also be included in the
computing device 70 and can include any device or group of
devices suitable for establishing a wired or wireless data
connection to one or more data networks . Non - limiting
examples of the communication interface 75 include an
Ethernet network adapter , a modem , and / or the like . The
computing device 70 can transmit messages as electronic or
optical signals via the communication interface 75 . A bus 76
can also be included to communicatively couple one or more
components of the computing device 70 .
10093] . The computing device 70 can execute program
code that configures the processor 71 to perform one or more
of the operations described above . The program code can
include one or more modules . The program code may be
resident in the memory 72 , storage 73 , or any suitable
computer - readable medium and may be executed by the
processor 71 or any other suitable processor . In some
embodiments , modules can be resident in the memory 72 . In
additional or alternative embodiments , one or more modules
can be resident in a memory that is accessible via a data
network , such as a memory accessible to a cloud service .
[0094] Numerous specific details are set forth herein to
provide a thorough understanding of the claimed subject
matter . However , those skilled in the art will understand that
the claimed subject matter may be practiced without these
specific details . In other instances , methods , apparatuses , or

US 2018 / 0107560 A1 Apr . 19 , 2018

systems that would be known by one of ordinary skill have
not been described in detail so as not to obscure the claimed
subject matter .
[0095] Unless specifically stated otherwise , it is appreci
ated that throughout this specification discussions utilizing
terms such as “ processing , " " computing , " " calculating , "
“ determining , ” and “ identifying ” or the like refer to actions
or processes of a computing device , such as one or more
computers or a similar electronic computing device or
devices , that manipulate or transform data represented as
physical electronic or magnetic quantities within memories ,
registers , or other information storage devices , transmission
devices , or display devices of the computing platform .
[0096] The system or systems discussed herein are not
limited to any particular hardware architecture or configu
ration . A computing device can include any suitable arrange
ment of components that provides a result conditioned on
one or more inputs . Suitable computing devices include
multipurpose microprocessor - based computer systems
accessing stored software that programs or configures the
computing system from a general purpose computing appa
ratus to a specialized computing apparatus implementing
one or more embodiments of the present subject matter . Any
suitable programming , scripting , or other type of language
or combinations of languages may be used to implement the
teachings contained herein in software to be used in pro
gramming or configuring a computing device .
10097) Embodiments of the methods disclosed herein may
be performed in the operation of such computing devices .
The order of the blocks presented in the examples above can
be varied - for example , blocks can be re - ordered , com
bined , and / or broken into sub - blocks . Certain blocks or
processes can be performed in parallel .
10098] The use of “ adapted to ” or “ configured to ” herein
is meant as open and inclusive language that does not
foreclose devices adapted to or configured to perform addi
tional tasks or steps . Additionally , the use of “ based on ” is
meant to be open and inclusive , in that a process , step ,
calculation , or other action “ based on ” one or more recited
conditions or values may , in practice , be based on additional
conditions or values beyond those recited . Headings , lists ,
and numbering included herein are for ease of explanation
only and are not meant to be limiting .
[0099] While the present subject matter has been
described in detail with respect to specific embodiments
thereof , it will be appreciated that those skilled in the art ,
upon attaining an understanding of the foregoing , may
readily produce alterations to , variations of , and equivalents
to such embodiments . Accordingly , it should be understood
that the present disclosure has been presented for purposes
of example rather than limitation , and does not preclude
inclusion of such modifications , variations , and / or additions
to the present subject matter as would be readily apparent to
one of ordinary skill in the art .
What is claimed is :
1 . A method , performed by a computing device , for

extending a file synchronization system with custom syn
chronization procedures , the method comprising :
monitoring , by a primary agent on the computing device ,

local changes to a first copy of a file tree and updates
from another computing device regarding remote
changes to a second copy of the file tree ;

identifying , by the primary agent , a change to the first
copy of the file tree or the second copy of the file tree ;

creating , by the primary agent , a synchronization plan for
the change based on a default synchronization proce
dure ;

sending , by the primary agent , the synchronization plan to
a custom agent for customization ;

receiving , by the primary agent , a custom synchronization
plan , wherein the custom agent created the custom
synchronization plan by modifying the synchronization
plan ; and

executing , by the primary agent , the custom synchroni
zation plan to synchronize the first copy of the file tree
and the second copy of the file tree .

2 . The method of claim 1 , wherein creating the synchro
nization plan comprises the primary agent using a default
synchronization procedure specified by a default synchro
nization procedure source , and wherein the custom agent
creates the custom synchronization plan using a custom
synchronization procedure specified by a custom synchro
nization procedure source different from the default syn
chronization procedure source .

3 . The method of claim 2 , wherein :
the default synchronization procedure source is a first

business entity or team that implements the file syn
chronization system ; and

the custom synchronization procedure source is a second
business entity or team that implements an application
or business process separate from implementation of
the file synchronization system .

4 . The method of claim 1 , wherein creating the synchro
nization plan comprises the primary agent using a first
program developed in a first programming language ,
wherein the custom agent creates the custom synchroniza
tion plan using a second program developed in a second
programming language different from the first programming
language .

5 . The method of claim 1 further comprising :
identifying , by the primary agent , multiple changes to the

first copy of the file tree or the second copy of the file
tree ;

sending , by the primary agent , synchronization plan for
the multiple changes to multiple custom agents ; and

receiving , by the primary agent , custom synchronization
plans from the multiple custom agents ; and

executing , by the primary agent , the custom synchroni
zation plans .

6 . The method of claim 1 further comprising checking , by
the primary agent , that the custom synchronization plan is
valid .

7 . The method of claim 1 , wherein sending , by the
primary agent , the synchronization plan to the custom agent
for customization comprises sending the synchronization
plan locally to the custom agent on the computing device .

8 . The method of claim 1 , wherein sending , by the
primary agent , the synchronization plan to the custom agent
for customization comprises sending the synchronization
plan to the custom agent on a remote computing device .

9 . The method of claim 1 , wherein creating the synchro
nization plan comprises creating a directed acyclic graph
(DAG) , wherein nodes of the DAG represents synchroniza
tion actions performed in a topologically sorted order when
the synchronization plan is executed .

10 . The method of claim 9 , wherein the synchronization
actions comprise at least one of upload file , move file ,

US 2018 / 0107560 A1 Apr . 19 , 2018

rename file , download file , delete file , create directory , move
directory , rename directory , download directory , and delete
directory .

11 . The method of claim 9 , wherein creating the synchro
nization plan comprises representing the DAG in a serialized
text format or graph of in - memory objects .

12 . The method of claim 9 , wherein the custom agent
creates the custom synchronization plan by deleting , renam
ing , or moving a node , changing an add to a delete , or
reversing a direction of an upload or download action .

13 . The method of claim 9 further comprising checking ,
by the primary agent , that the custom synchronization plan
is valid by ensuring that the DAG is still directed and
a - cyclical , that dependencies of actions have not been
wrongly deleted , that any files and folders being uploaded or
downloaded do exist , and that the actions can be executed
successfully .

14 . A method , performed by a computing device , for
providing delegated synchronization procedures in a file
synchronization system , the method comprising :

receiving , by a primary agent on the computing device ,
registration by a delegate to control synchronization a
portion of a file tree ;

monitoring , by a primary agent on the computing device ,
local changes to a first copy of a file tree and updates
from another computing device regarding remote
changes to a second copy of the file tree ;

identifying , by the primary agent , a change to the first
copy of the file tree or the second copy of the file tree ;

determining that the delegate is responsible for synchro
nization related to the change based on the registration ;

sending a notification of the change to the delegate ;
receiving a delegate - specified synchronization plan for

the change ; and
executing the delegate - specified synchronization plan to

synchronize the first copy of the file tree and the second
copy of the file tree .

15 . The method of claim 14 further comprising sending
notifications of multiple changes to multiple delegates based
on the multiple delegates having registered for multiple
portions of the file tree , wherein the multiple delegates
provide delegate - specified synchronization plans for the
multiple changes .

16 . The method of claim 14 further comprising :
identifying , by the primary agent , that another change

requires deleting or moving a parent folder of the
portion registered to the delegate ; and

controlling , by the primary agent , deleting or moving of
the parent folder and the portion registered to the
delegate instead of allowing the delegate to control the
deleting or moving .

17 . The method of claim 14 further comprising :
identifying , by the primary agent , that another change

requires moving a file or folder from a first portion of

the file tree for which the delegate registered to a
second portion of the file tree for which a second
delegate registered ;

sending a first notification to the delegate of a first change
deleting the file or folder from the first portion of the
file tree ; and

sending a second notification to the second delegate of a
second change creating the file or folder in the second
portion of the file tree .

18 . The method of claim 14 further comprising :
the primary agent receiving from multiple delegates infor
mation reporting synchronization progress of the mul
tiple delegates ; and

aggregating and reporting the information reporting syn
chronization progress of the multiple delegates .

19 . A system for file synchronization with custom syn
chronization procedures , the system comprising :
one or more processors processor ; and
one or more non - transitory computer readable mediums

comprising instructions , wherein , when the instructions
are executed , at least one of the one or more processors
performs operations comprising :
monitoring , at a primary agent , local changes to a first

copy of a file tree and updates from another com
puting device regarding remote changes to a second
copy of the file tree ;

identifying a change to the first copy of the file tree or
the second copy of the file tree ;

creating , by the primary agent , a synchronization plan
for the change based on a default synchronization
procedure ;

sending , by the primary agent , the synchronization plan
to a custom agent ;

receiving a custom synchronization plan at the primary
agent ; and

executing , by the primary agent , the custom synchro
nization plan to synchronize the first copy of the file
tree and the second copy of the file tree ;

receiving , at a custom agent , the synchronization plan ;
creating , by the custom agent , the custom synchroni

zation plan by modifying the synchronization plan ;
and

sending , by the custom agent , the custom synchroni
zation plan to the primary agent .

20 . A system of claim 19 , wherein :
creating the synchronization plan comprises the primary

agent using a default synchronization procedure speci
fied by a default synchronization procedure source ; and

creating the custom synchronization plan comprises the
custom agent using a custom synchronization proce
dure specified by a custom synchronization procedure
source different from the default synchronization pro
cedure source .

* * * * *

