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Abstract

“I start with a chicken. A good chicken. A cheap chicken wouldn’t make a
rich soup. And it has to have gray feathers”— Elsie Zussman

The supertree problem is of interest to biologists in their efforts to build a complete
tree of life. It involves taking a set of input trees with (usually) overlapping leaf sets and
building a supertree that contains all the input species and respects all the evolutionary
relationships in the input trees. Although efficient imperative solutions to the problem
exist, they are highly specialised to solving “pure” variations of the problem. For this
reason, constraint programming solutions have been tried and these do indeed improve
the flexibility of the solution as well as being more easily understandable. However this
power comes at a cost in time and space efficiency. The space efficiency problems are
most pressing, because modest input data from biological journals cannot be loaded into
the memory of a powerful workstation.

The root of the space efficiency problem is that the ultrametric constraint is posted
C(n, 3) times in the species model, where n is the number of species being modelled.
This cubic space complexity is compounded by the fact that naive implementations of
the constraint have large constant factors. This project achieves this space improvement
using a whole-matrix ultrametric constraint that reduces the overall space complexity
by a factor of n to O(n2) and achieves 2 order of magnitude improvements in practice,
even on quite small inputs.

Another outcome of the project was to undertake a detailed analysis of the ultra-
metric constraint, the end result of which is a constraint design maintaining generalised
bounds arc consistency. A rigorous proof of the correctness of this constraint was com-
pleted. Other designs and implementations of the same constraint were produced. The
set of constraints were compared in an empirical study.

Preliminary results indicate that this level of consistency is sufficient to avoid search
altogether, and this leads to a worst case time bound of O(n4) to solve the supertree
problem, compared to O(nn2

) for previous designs.
Next, a generalised ultrametric constraint was designed to provide the same time

and space benefits to an alternative supertree model incorporating ancestral divergence
dates. This constraint was also proved correct rigorously but more informally.

The report starts with reviews of the fields of constraint programming and species
trees. No knowledge of either subject is assumed, although some programming knowl-
edge and mathematical maturity are necessary.

1



Chapter 1

Background in constraint

programming

“Consistency is the last refuge of the unimaginative.”— Oscar Wilde

1.1 The Constraint Satisfaction Problem

The presentation in this section is based on [Smi01] but similar material can be found
in the first section of almost any publication about constraint programming.

A finite domain CSP (henceforth, CSP) consists of a set of variables {v1, . . . , vn},
each with a domain di that comprises a (finite) set of possible values, plus a set C of
constraints that restrict the values that variables can simultaneously take. The motiva-
tion for modelling a problem as an instance of the CSP is to find zero or more solutions
which are simultaneous assignments of domain values to all variables in such a way that
all constraints are satisfied.

Domains commonly contain sequences of consecutive integers, though they can also
be arbitrary sets of integers and mathematical entities like sets and graphs[DDD05].

Constraints may be unary , meaning that they constrain one variable; binary , mean-
ing that they constrain two; ternary , three; and more generally n-ary . The formal
definition of a constraint is that it is a subset of the cartesian product of the domains
of the variables that it is over, this subset specifies the values that are allowed together
(although the alternative of specifying the values that are not allowed is equally descrip-
tive). In practice, a constraint may be specified extensionally , where the acceptable
subset of the cartesian product is listed exhaustively, or intensionally , where the subset
is described by some well-defined relation between the values.

An example of a constraint that would be specified extensionally is one that con-
strains variables representing consecutive seats around a dinner table to contain values
corresponding to people from different couples. The definition is so nebulous that we
could not expect to characterise the inconsistent values any more concisely than by a
list, e.g.

{ (Liz, Philip),
(David, Victoria),
(Elton, David) }

In constrast, the ≤ constraint’s extension would occupy O(1 + 2 + . . . + n) = O(n2)
space for two equal variables but it is very easy to verify if a pair of values conforms to
it—certainly a lot easier than searching a data structure for the pair.

2



CHAPTER 1. BACKGROUND IN CONSTRAINT PROGRAMMING 3

Since all constraints presented in this report have Ω(n3)1 extensions and satisfactory
intensional solutions, we will consider extensional constraints no further.

Now that constraints are defined we can be a little more rigorous in defining a
solution to a CSP. A solution to a CSP with variables x1, . . . , xn is a tuple (a1, . . . , an)
that satisfies all the constraints C. A solution satisfies a k-ary constraint c ∈ C over
variables xs1

, . . . , xsk
whenever (as1

, . . . , ask
) ∈ c.

A useful way to think about a CSP is as a graph whose vertices are variables and
whose edges are constraints between variables2.

1.2 The CSP in practice

Many problems of practical interest can be characterised as CSPs. To solve such prob-
lems by computer a CSP solver program is told about all the variables, domains and
constraints that characterise the problem (the model). The solver will then provide
solutions, if any exist.

One particular way of doing this is by using the JChoco package for Java. An
outline procedure for creating and solving a problem in JChoco is as follows:

1. Create a new Problem object to represent the model. It provides methods to create
variables; create and post constraints; instigate and guide the search process; and
access solutions.

2. Create the variables in the problem, and simultaneously specify their domains
(e.g. prob.makeBoundIntVar("x",0,10)).

3. Post constraints over the variables (e.g. prob.post(prob.equals(x,y))).

4. Tell the solver to find one or all solutions, and output them (e.g. prob.solve(true)).

The beauty of the JChoco system is that the ubiquitous OO paradign and the
declarative paradigm co-exist, enhancing the power and readability of OO code and
adding flexibility to constraint modelling by the addition of control structures and full
IO facilities to generate models programmatically (see Section 1.2.2 for an example of
these techniques). Neither of these features are essential in a CSP solver, for example the
Minion[GJM06] solver takes as input a text file specifying the variables and constraints;
any variety must be generated externally.

We will now try basic modelling in JChoco by an easy example and then a more
difficult one.

1.2.1 A PIN number puzzle

Problem: To find the unique 4 digit bankcard PIN abcd such that each digit is different,
the two digit number ab is 3 times the number cd and bc is 2 times da.
Model: 4 variables a, b, c, d each with domain 0, . . . , 9 to represent each of the 4 digits
in the result. Constraints {a 6= b, a 6= c, a 6= d, b 6= c, b 6= d, c 6= d} to make the digits
different and constraints {10a + b = 3(10c + d), 10b + c = 10d + a} to enforce the digit
relationships.
Solution: See Listing 1.1.
Commentary:

1The big omega Ω notation means the opposite of big oh O. That is that a function is Ω(f(n)) if it
grows asymptotically at least as fast as f(n).

2Assuming binary constraints throughout, for n-ary constraints the graph is a hypergraph (see
[Ros98])
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Line 3 Create Problem to encapsulate model and to direct solver.

Line 6 Create variable a whose domain is 0, . . . , 9.

Line 12 Create and post a constraint that a 6= b.

Lines 20-21 Create and post a constraint that 10c + 1d = 30a + 3b.

Line 26 Tell the solver to search for all solutions (false parameter means to stop after
finding the first).

Lines 27-29 Print a “pretty” representation of each solution.

Line 30 Output the number of solutions.

Output: See Listing 1.2. This lists the values assigned to variables in the solution
found (a = 2, b = 1, . . . ) as well as the fact that only one solution was found.

1.2.2 Crystal maze puzzle

The PIN puzzle was a single problem, whereas the crystal maze puzzle3 is a template
for an infinite number of problems. The specification for a problem is provided in a text
file. This means that Java’s IO facilities and programming structures must be used to
read it in and post it in a different way each time.
Problem: Given graph G = (V,E) and |V | = n, find a unique labelling l for the
vertices such that (u, v) ∈ E ⇒ |l(u) − l(v)| 6= 1, i.e. neighbouring vertices labelled
non-consecutively.
Model: For each vertex vi create a variable xi whose domain is 1, . . . , n. Constrain
variables to be pairwise different and |xi − xj | 6= 1 for vertices vi and vj joined by an
edge.
Instance: An instance with 3 vertices and 1 edge (v1, v2) is specified by a file contain-
ing:

3 1

1 2

Solution: See Listing 1.3.
Commentary:

Lines 14-15 Create an array of numNodes variables each with domain 1, . . . , numNodes.

Lines 17-25 There’s nothing new in the individual lines of code here, but the way that
the constraints are posted differently depending on the data in the file is new. This
sort of technique is how a single constraint program can be made to solve different
problems.

Line 28 Post the constraint that all the variables must take different values. This has
the possibility of doing more propagation than a clique of 6= constraints[Rég94].

Output: See Listing 1.4, where two distinct solutions were found and both have been
printed out.

3Despite its name, this puzzle has nothing to do with crystal mazes—it was a challenge on the TV
gameshow of the same name and has come to be known by this moniker.
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1 public class CSolve {

2 public static void main(String [] args) throws ContradictionException {

3 Problem pin = new Problem ();

4
5 //variables to represent each individual digit

6 IntVar a = pin.makeEnumIntVar("a" , 0, 9);

7 IntVar b = pin.makeEnumIntVar("b" , 0, 9);

8 IntVar c = pin.makeEnumIntVar("c" , 0, 9);

9 IntVar d = pin.makeEnumIntVar("d" , 0, 9);

10
11 //all different constraint

12 pin.post(pin.neq (a,b));

13 pin.post(pin.neq (a,c));

14 pin.post(pin.neq (a,d));

15 pin.post(pin.neq (b,c));

16 pin.post(pin.neq (b,d));

17 pin.post(pin.neq (c,d));

18
19 // relationship between digits , using scalar product expressions

20 pin.post(pin.eq(pin.scalar (new int [] {10 , 1} , new IntVar [] {c, d}),

21 pin.scalar (new int [] {30 , 3} , new IntVar [] {a, b})));

22 pin.post(pin.eq(pin.scalar (new int [] {10 , 1} , new IntVar [] {d, a}),

23 pin.scalar (new int [] {20 , 2} , new IntVar [] {b, c})));

24
25 //find and output all solutions

26 pin.solve(true);

27 do {

28 System .out.println (pin.pretty ());

29 } while (pin.nextSolution().booleanValue());

30 System .out .println (pin.getSolver ().getNbSolutions() + " solutions ");

31 }

32 }

Listing 1.1: Code to solve PIN problem

1 $$ java -cp ~/ project :. CSolve

2 Pb[4 vars , 8 cons]

3 Pb[4 vars , 8 cons]

4 ==== VARIABLES ====

5 a:2{2}

6 b:1{1}

7 c:6{6}

8 d:3{3}

9 Pb[4 vars , 8 cons]

10 ==== CONSTRAINTS ====

11 a:2 != b:1

12 a:2 != c:6

13 a:2 != d:3

14 b:1 != c:6

15 b:1 != d:3

16 c:6 != d:3

17 10* c:6 + 1*d:3 + -30*a:2 + -3*b:1 = 0

18 10* d:3 + 1*a:2 + -20*b:1 + -2*c:6 = 0

19
20 1 solutions

Listing 1.2: Result for PIN problem
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1 public class Crystal {

2 public static void main(String [] args) throws IOException ,

3 ContradictionException {

4 StreamTokenizer st =

5 new StreamTokenizer(new InputStreamReader(System .in));

6 //get number of nodes

7 st.nextToken (); int numNodes = ( int )st.nval;

8
9 //get number of edges

10 st.nextToken (); int numEdges = ( int )st.nval;

11
12 //put together variables so we can create constraints as we read edges in

13 Problem pb = new Problem ();

14 IntDomainVar[] nodes =

15 pb. makeBoundIntVarArray ("nodes" , numNodes , 1, numNodes );

16
17 //read in constraint and post non -consecutive constraint on the fly

18 for (int i = 0; i < numEdges ; i++) {

19 st.nextToken (); int n1 = ( int )st.nval - 1;

20 st.nextToken (); int n2 = ( int )st.nval - 1;

21 IntExp sub = pb.minus (nodes[n1], nodes [n2]);

22 // post non -consecutive constraint

23 pb.post(pb.neq(sub , 1));

24 pb.post(pb.neq(sub , -1));

25 }

26
27 //ensure that all numbers are accounted for

28 pb.post(pb.allDifferent(nodes));

29
30 //now solve and output

31 pb.solve(true);

32 do {

33 System .out.println (pb.pretty ());

34 } while (pb.nextSolution().booleanValue());

35 System .out .println (pb. getSolver ().getNbSolutions() + " solutions ");

36 }

37 }

Listing 1.3: Code to solve Crystal Maze puzzle

1 $$ java -cp ~/ choco :. Crystal < trivinst

2 Pb[3 vars , 3 cons]

3 Pb[3 vars , 3 cons]

4 ==== VARIABLES ====

5 nodes [0]:1[1 , 1]

6 nodes [1]:3[3 , 3]

7 nodes [2]:2[2 , 2]

8 Pb[3 vars , 3 cons]

9 ==== CONSTRAINTS ====

10 nodes [0]:1 != nodes [1]:3 + 1

11 nodes [0]:1 != nodes [1]:3 - 1

12 choco.global .BoundAllDiff@18558d2

13
14 Pb[3 vars , 3 cons]

15 Pb[3 vars , 3 cons]

16 ==== VARIABLES ====

17 nodes [0]:3[3 , 3]

18 nodes [1]:1[1 , 1]

19 nodes [2]:2[2 , 2]

20 Pb[3 vars , 3 cons]

21 ==== CONSTRAINTS ====

22 nodes [0]:3 != nodes [1]:1 + 1

23 nodes [0]:3 != nodes [1]:1 - 1

24 choco.global .BoundAllDiff@18558d2

25
26 2 solutions

Listing 1.4: Result for Crystal Maze puzzle
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1.3 Implementation of constraint solvers

The implementation of solvers for the CSP is an interesting and varied subject which
we will touch on only briefly and only then when it is relevant to the aims of the project.

1.3.1 Search techniques: Generate and test, forward checking and

maintaining arc consistency

JChoco uses one out of several available search techniques to find solutions. It has
the key properties of completeness and soundness, meaning that all solutions are found
(completeness) and that all found solutions are correct (soundness).

We will begin by looking at some legacy search techniques (all of which are both
sound and complete) before moving on to the modern technique that JChoco employs.

The generate and test algorithm works by repeatedly instantiating every variable
with a value from its domain and checking if all constraints are satisfied. If so, the
instantiation is a solution; if not, it is discarded. Once every instantiation has been
tried the search process is finished. This procedure has O(m.m . . . m

︸ ︷︷ ︸

n times

) = O(mn) time

complexity for n variables each with m values[Smi01]. Intuitively, the reason that this
algorithm has been superseded is that it blindly continues instantiating even when the
partial solution is incorrect. For example, with variables x, y and z and constraint x 6= y
if x ← 1 and y ← 1 the algorithm will proceed to try instantiating z although it can
never succeed in producing a solution. With more variables or larger domains this could
result in a great deal of unnecessary work and is known as thrashing 4.

Backtracking algorithms like backmarking, backjumping and conflict-directed back-
jumping (see [Pro93]) exploit the above observation by not continuing with instantiation
once a partial assignment violates any constraint.

A further refinement is to infer from currently instantiated variables what future
variables cannot be instantiated to, thereby pruning subtrees from the search tree ahead
of time. Algorithms that do this are categorised as forward checking [HE80]. A simple
method for forward checking (usually known simply as forward checking or FC) is
to remove from future domains values that are directly incompatible with each new
instantiation. However, the maintaining arc consistency (MAC)[SF94a] algorithm is a
smarter method that not only does this but also cascades removals so that all remaining
values in all domains are pairwise compatible, rather than only past and future variables
being compatible. To see the difference between these consider variables x, y and z each
with domain {1, 2, 3}, and constraints x 6= y and y = z. If the search process has x← 1
then with plain FC the remaining domains are pruned to {2, 3} for y and {1, 2, 3} for z,
that is, z’s domain is unchanged. Contrast this with MAC where as before y’s domain
is {2, 3} but this time z’s domain is trimmed down to {2, 3}. This extra trimming is
due to the effect of cascading the loss of 1 ∈ y.

The precise sense in which variables are compatible with one another is defined by
arc consistency (AC) and in maintaining arc consistency every pair of variables is kept
AC throughout the search process5. Two variables vi and vj with domains di and dj

are AC w.r.t. a constraint C if and only if ∀x ∈ dx, ∃y ∈ dy s.t. (x, y) ∈ C and ∀y ∈ dy,
∃x ∈ dx s.t. (x, y) ∈ C. This is not the only only possible level of consistency, more will
be described in Section 1.3.3.

4C.f. The idea of thrashing in virtual memory where virtual memory pages are loaded and unloaded
intensively.

5Here the AC acronym is being overloaded to mean arc consistent rather than arc consistency. It
should be clear by the context what the intended meaning is.
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Just because a problem is AC doesn’t mean it has a solution. Higher levels of consis-
tency like SAC[PSW00] can rule out more non-solutions ahead of time but potentially
with a time penalty. Experimental evidence suggests[SF94b] that AC is a good trade-off
and so we will not consider higher consistency levels any further.

Arc consistency can be maintained in many different ways. In JChoco a particular
specialisation of the AC-5 algorithm[HDT92] is used, but it will also be necessary to
describe another specialisation called AC-36. These AC algorithms are the subject of
the next Section 1.3.2.

1.3.2 Arc consistency algorithms

The definition of AC says that all values should be supported by all constraints. That
is, for any x and constraint c, there is a y that partners x to satisfy c. In practice
this means that AC algorithms must remove unsupported values from the domains of
variables where necessary. In the MAC algorithm this is done before search as well as
during search whenever a domain is reduced. In this section we will see AC-3 and AC-

5 which are both used to implement MAC, so that they will somehow keep a problem
AC as search proceeds.

Notice that when a variable is reduced only other variables connected to it through
a chain of constraints can possibly be reduced as a result of enforcing AC (i.e. AC is
a local property). A corollary of this local property is that when a variable’s domain
changes during the search process we need only check variables that share a constraint
with it to ensure all their values are still supported rather than checking everything.
This observation will be important in understanding both AC-3 and AC-5.

1.3.2.1 AC-3

The AC-3 algorithm[Mac75] uses a set S of directed edges to keep track of variables
that may not be AC with a neighbour. For example if the set contains (vi, vj) this
means that vi may need to be revised due the loss of a value from vj .

Let Cij be the constraint between vi and vj , if it exists7. The AC-3 algorithm is
to repeatedly remove a pair (vi, vj) from S until none remain. Each time set D = {x :
x ∈ vi ∧ ¬∃y ∈ vj s.t. (x, y) ∈ Cij} is found, i.e. the set of all values in vi that are
unsupported by vj . These values D are then removed from the domain of vi to make it
AC w.r.t. vj . Next, ∀Cki ∈ C, Cki is added to S, so that the effects on all connected
variables of the removals in vi will be investigated. Once S becomes empty AC has been
established amongst all variables.

When establishing AC for the first time before search starts, the set will contain every
edge in both directions wherever a constraint exists. When a variable is instantiated
during search and AC is to be re-established, only edges ending at the instantiated
variables are added to the set before running the algorithm.

Let m be the size of the largest domain and let c be the number of constraints.
The time complexity of discovering the set D is O(m2). To make the whole problem
AC S starts with 2c pairs in it and, since in the worst case each set D could have size
1, up to 2cm further pairs may have to be added. Hence the algorithm has overall
O((2c + 2cm)m2) = O(cm3) worst case time complexity[YY01].

6
AC-3 was not conceived as a specialisation of AC-5at first[Mac75], but was retrofitted to be

such[HDT92]
7If more than one such constraint exists then let it be the union of the two constraints. Furthermore,

Cji is the same as Cij but with the tuples in the constraint reversed.
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1.3.2.2 AC-5

The AC-5 algorithm[HDT92] makes the observation that when particular values are lost
from a variable, consistency algorithms may be able to take advantage of the specific
value that has been lost to speed up pruning. For example if x = y and x loses the value
1 then we know for a fact that 1 is the only value ruled out for y. In the general case
the complexity of AC-5 is O(cm3) which is no better than AC-3. However, in special
cases the worst case for enforcing AC can be reduced to O(cm) (for justification of this
see [HDT92]).

In AC-5, instead of a set of directed edges to process, we have a set S of triples
(vi, vj , y) each of which means that “as a result of the loss of y from vj , vi must be
tested for AC”. Once all such triples have been processed the problem is AC.

To establish AC for the first time before search, the algorithm first checks each
variable vi in turn for consistency with its neighbours and obtains a set ∆1 which is all
the values that should be removed from vi. Now {(vk, vi, d) : Cik ∈ C∧d ∈ ∆1} is added
to S, so that the effect on other variables of these removals from vi is considered. The
next stage is to repeatedly remove one triple (vi, vj , y) from S, and to carry out any
removals ∆2 from vi needed as a result. Now extra triples {(vk, vi, d) : Cik ∈ C∧d ∈ ∆2}
are added to S to propagate the effects of these removals to neighbouring variables. Once
the queue is empty the changes have settled down and the problem is AC.

During search triples {(vi, vj , y) : Cij ∈ C} are added to S when variable vj loses
value y, so that only the minimum work is done to re-establish AC.

For a more detailed discussion of the operation of AC-5 and a proof of correctness
see [HDT92].

1.3.2.3 General discussion

For the purposes of this project it is only necessary to know that AC-5 gives constraint
designers the chance to make inferences based on the particular value removed from a
domain, rather than being limited to just knowing that some value has been lost, as is
the case for AC-3. Also, the fact that AC-5 is complete and sound[HDT92] means that
the contract on a custom constraint (such as those presented in this report) is that when
it is notified of the loss of a value, everything that it removes is genuinely unsupported.
Without this guarantee search could be incomplete. Furthermore if a constraint allowed
incorrect pairs to be instantiated, search could be unsound.

1.3.3 Other levels of consistency

So far we have assumed that variables can have arbitrary domains. For a domain with
size d implementations of variables will require Ω(d) space. However by restricting
attention to domains containing continuous sequences of values, the space complexity
can be reduced to O(1). This is done by storing a current lower bound and current upper
bound. Clearly this representation cannot have arbitrary non-bound values removed and
hence it may be impossible to maintain full AC.

For such occasions there exists an analog of AC for bound variables called bounds
AC , this means that rather than having to support every value in a domain, it is
sufficient that the upper and lower bounds are supported. In JChoco it is possible to
mix AC and bounds AC constraints and as a result of this the whole problem may not
be kept fully AC by the MAC algorithm. Nevertheless, final solutions will be correct
because once a variable has been instantiated its lower and upper bounds are equal and
the definition of bounds AC becomes equivalent to the definition of AC.
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As an example of the difference suppose that a bounds AC = (equals) constraint is
used. The CSP x = {1, 3}, y = {1, 2, 3} and x = y is bounds AC but not AC.

The choice of whether to use bounds AC or AC is closely related to the choice
between bound variables (with sequential domains) and enumerated variables (with
arbitrary domains). Choice of bound variables may be justified due to space concerns.
Also, as above, full AC may not be possible with bounds variables, and the use of a
specialised bounds AC constraint on such variables could reduce running time. Another
justification for using bounds AC is possible reduction in running time if lazyness at
nodes dominates an increase in search tree size.

The species model that this project is based around uses bounds variables and so
many of the custom constraints in this project enforce bounds AC. It would be inter-
esting future work to investigate how using enumerated variables and full AC affects
results.

1.3.4 Augmenting the search process

A common modelling technique is to introduce auxiliary variables whose values are
irrelevant but constrained in such a way that an inconsistency in a solution manifests
itself as a domain wipeout. For this reason and others a constraint modeller may wish
to limit the variables that are instantiated to only those that are part of a solution and
to leave out the auxiliary variables. In a constraint model, the values that are actually
being searched are called the search variables. In JChoco, by default, all variables are
search variables but this can be changed.

Until now we have tacitly assumed that variables are instantiated in an arbitrary
fixed order, but this does not need to be the case. Some constraint toolkits, and
JChoco in particular, offer dynamic variable ordering heuristics that are intended to
reduce search effort by making an intelligent choice of the order in which to instantiate
variables. As an example of a situation where this could be beneficial, consider vari-
ables x, y and z with domains {1, . . . , 1000}, {1, . . . , 1000} and {1000} respectively, with
constraints x = z and y = z. Using MAC and a static variable order of x, y, z, 1000
instantiations x ← 1, x ← 2, . . . , x ← 1000 will have to be attempted before a value
for x is found that is consistent with the domain of z. We then have the same problem
for variable y. A dynamic solution that would have worked well in this instance would
have been to choose to next instantiate the variable whose domain is smallest, because
in this case the domains of x and y would immediately have been reduced to {1}. This
is known as the min-domain heuristic and it is the default in JChoco. Intuitively, it
works well because if a solution is impossible it will be discovered sooner by failing on
the smallest domain. This is an example of the fail first heuristic[HE80].

1.4 Implementation of custom constraints in JCHOCO

In JChoco, constraints are represented by subclasses of AbstractIntConstraint. This
class has a large number of methods, many of which can be overridden if desired, but to
implement a custom constraint only a small subset of these have to be implemented8:

8It is not clear from JChoco documentation which methods need to be overridden but these ones
seem to work fine and Patrick Prosser has established that they are sufficient by personal correspondence
with the authors of JChoco. Strictly speaking it should be sufficient to implement awakeOnRem() and
awake(), because the former is analogous to the operation of removing a triple from the set S in AC-

5 and the latter to checking every value for support at the outset. It is outwith the scope of this project
to investigate the issue and it makes little difference to the correctness of the constraint’s designs, even
if the uncertainty reduces confidence in implementations a little bit.
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awake() Invoked by the MAC algorithm before search to make the constraint AC.

awakeOnRem(idx, val) Invoked during search to re-establish consistency after variable
index idx has lost value val.

awakeOnRemovals(idx, valIter) Invoked during search to re-establish consistency
after variable index idx has lost all the values in valIter.

awakeOnInst(idx) Invoked during search to re-establish consistency after variable in-
dex idx has been instantiated.

awakeOnInf(idx) Invoked during search to re-establish consistency after variable index
idx has lost one or more values causing a change in its lower bound.

awakeOnSup(idx) Analogous to awakeOnInf(idx) for upper bound change.

Generally speaking, the bodies of these functions will contain code that looks at
the current domains of variables that the constraint acts over and then removes some
unsupported values from variables in the constraint. Whenever a constraint empties a
variables domain, it will (directly or indirectly) throw a ContradictionException that
results in backtracking.

The generic AC-5 algorithm only notifies constraints when individual values are lost.
In JChoco the above special cases are identified to make the job of writing constraints
easier. We will see an example in the next section of a constraint that doesn’t need
to do any propagation when lower bounds are changed and in this case awakeOnInf()

would be a “do nothing” method to save itself unnecessary work. Furthermore if a lower
bound changes multiple times before the change is propagated, JChoco may coalesce
these notifications into one function call to awakeOnInf(). Cases for other methods are
similar.

When a constraint makes changes to a variable’s domain, the underlying JChoco li-
brary adds triple to the AC-5 queue to cascade the change, by notifying all the other
constraints on that variable. Hence each constraint does its own job in isolation to the
others; they need not notify each other of domain event directly.

1.4.1 An example constraint in JCHOCO

An implementation of the < (strictly less than) constraint is shown in Listing 1.5. It
illustrates most of the basic techniques of programming custom constraints in JChoco:

Line 3 Notify the superclass (and indirectly the AC-5 algorithm) of the variables in-
volved in the constraint.

Line 4 Create convenient aliases for the variables involved.

Lines 6-9 An increase in the lower bound of v1 cannot result in loss of support for any
value. This is because any value v in v0 that was supported by the lower bound
must still be supported by a larger value (v < v1.inf < anything else in v1). When
v0’s lower bound is changed only values in v1 that are greater than the new lower
bound are still supported, this change in the v1’s domain is achieved by changing
its lower bound (line 8).

Lines 10-13 Symmetric with awakeOnInf().

Lines 14-19 The reasoning here is a special case of awakeOnInf() and awakeOnSup().
When v0 is instantiated everything in v1 must now be bigger than it. When v1 is
instantiated everything in v0 must be smaller than it.
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1 class NLT extends AbstractBinIntConstraint {

2 public NLT( IntDomainVar v0 , IntDomainVar v1) {

3 super(v0 , v1);

4 this.v0 = v0; this.v1 = v1;

5 }

6 public void awakeOnInf (int idx) throws ContradictionException {

7 if(idx == 0 && v1.getInf () < v0.getInf () + 1)

8 v1.setInf (v0.getInf () + 1);

9 }

10 public void awakeOnSup (int idx) throws ContradictionException {

11 if(idx == 1 && v0.getSup () > v1.getSup () - 1)

12 v0.setSup (v1.getSup () - 1);

13 }

14 public void awakeOnInst (int idx ) throws ContradictionException {

15 if (idx == 0)

16 v1.setInf (v0.getVal () + 1);

17 else

18 v0.setSup (v1.getVal () - 1);

19 }

20 public void awakeOnRem (int idx , int a) throws ContradictionException {

21 if(idx == 0 && a < v0.getInf ())

22 awakeOnInf (idx);

23 else if(idx == 1 && v1.getSup () < a)

24 awakeOnSup (idx);

25 }

26 public void awakeOnRemovals(int idx , IntIterator deltaDomain )

27 throws ContradictionException {

28 while(deltaDomain .hasNext ()) {

29 awakeOnRem (idx , deltaDomain .next ();

30 }

31 public void awake () throws ContradictionException {

32 awakeOnInf (0) ; awakeOnSup (1);

33 }

34 }

Listing 1.5: A JChoco constraint for <

Lines 20-25 When an individual value a is lost from v0 then it can only cause the loss
of support for a value in v1 when it was a lower bound. In this case the code for
awakeOnInf(0) does the correct propagation. The reasoning for a loss from v1 is
symmetric.

Lines 26-30 No special reasoning for removal of multiple values, just repeatedly apply
procedure for removing one value.

Lines 31-33 Only insufficiently low values in v0 and insufficiently high values in v1

may be unsupported. These will be clipped by the procedures in awakeOnInf()

and awakeOnSup().



Chapter 2

Background in species trees

“A tree’s a tree. How many more do you need to look at?”— Ronald Rea-
gan

“If a frog turned into a monkey, shouldn’t you have lots of fronkies?”—
Bishop Wayne Malcolm

2.1 Trees

A tree is a connected, acyclic, undirected graph. A rooted tree is a tree in which there
is a distinguished node called the root . Let x and y be nodes in a rooted tree T with
root r. A node is an ancestor of x if and only if it lies on the unique path from r to
x. Conversely y is a descendent of x if and only if x is an ancestor of y. If y follows
x on some path from the root then y is x’s child and x is y’s parent . Hence only the
root node has no parent. A node with no children is called a leaf , anything else is an
internal node. The degree of a node is the number of children it has. The height of a
tree T is the length of the longest path in the tree. The depth of x is the length of the
path to it from the root. The most recent common ancestor (m.r.c.a.) of x and y is the
node with greatest depth that is an ancestor of both x and y. In this definition of trees
the children are implicitly unordered. For an illustration of all the above concepts see
Figure 2.1.

A bifurcating tree is a tree in which every internal node has degree 2, such a tree is
shown in Figure 2.2.
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Figure 2.1: Illustrations of trees and related definitions
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Figure 2.2: A bifurcating tree labelled by node depth.

2.2 Ultrametrics

A metric[Wei07a] is a nonnegative function g(x, y) that provides a sort of “distance”
between two values x and y in a set S. It must

• satisfy the triangle inequality that ∀x1, x2, x3 ∈ S,∃ a permutation xp1
, xp2

, xp3

s.t.
g(xp1

, xp2
) + g(xp2

, xp3
) ≥ g(xp1

, xp3
),

• be symmetric so that ∀x, y ∈ S, g(x, y) = g(y, x), and

• be such that ∀x ∈ S, g(x, x) = 0.

For example if S is the set of all towns then the distance between towns as the crow
flies is a metric.

An ultrametric[Wei07b]1 is a metric that replaces the triangle inequality with

• ∀x1, x2, x3 ∈ S,∃ a permutation xp1
, xp2

, xp3
s.t.

g(xp1
, xp3

) ≥ min(g(xp1
, xp3

), g(xp2
, xp3

))

i.e. there is a tie for the minimum.
An example of an ultrametric that will have some relevance later in this Chapter is:

Theorem 1. The depth of the m.r.c.a. of leaves in a bifurcating tree is an ultrametric.

Proof. The symmetry property holds because the m.r.c.a. property is symmetric, i.e. x’s
m.r.c.a. with y is the same as y’s m.r.c.a. with x.

The g(x, x) = 0 property is vacuous, because the m.r.c.a. of a leaf node with itself is
undefined.

The strengthened triangle inequality holds because, in a bifurcating tree, for any
choice of 3 leaves, either (1) two are in one subtree of the root and one is in the other,
or (2) all are in the same subtree. In case (1) the m.c.r.a. of the pair is the same subtree
has depth > 0 but the m.r.c.a. for pairs in different subtrees of the root have depth
0. Case (2) requires proof by induction: apply the above argument to the subtree that
the leaves are in, if the root of the subtree is the m.r.c.a. then we have reduced the
problem to case (1), otherwise try case (2) again (eventually (1) must work because the
m.r.c.a. always exists).

1Strictly the definition is that of a min-ultrametric, but we will make no distinction in this report
between variants of the Um relationship.
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2.2.1 Ultrametric matrices

The definitions in this section are based on those in [Gus97].

Definition 1. Let D be a real symmetric n× n matrix. An ultrametric tree for D is a
rooted tree T such that:

1. T has n leaves, each corresponding to a unique row of D;

2. each internal node of T has at least 2 children;

3. for any two leaves i and j, D(i, j) is the label of the most recent common ancestor
of i and j; and

4. along any path from the root to a leaf, the labels strictly increase.

Such a tree and matrix are shown in Figure 2.3.
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Figure 2.3: Correspondence between symmetric matrix and ultrametric tree

Definition 2. A symmetric matrix D is an ultrametric matrix if and only if for every
set of 3 distinct indices i, j and k, there is a tie for the minimum of D(i, j), D(i, k) and
D(j, k); and D(i, i) = 0 for all i.

For example, the matrix in Figure 2.3(a) is an ultrametric matrix. It should be clear
that this definition means that an ultrametric matrix describes an ultrametric distance
function.

There is a correspondence between ultrametric trees and ultrametric matrices that
will be important in this project:

Theorem 2. A symmetric matrix D has an ultrametric tree T if and only if it is an
ultrametric matrix. Furthermore, the tree T uniquely determines the matrix D and the
matrix D uniquely determines the tree T .

Proof. Given in [Gus97].

The result and the proof itself have several practical repercussions:

• The uniqueness part means that trees and matrices are interchangable and we will
take advantage of this property by solving the supertree problem using ultrametric
matrices instead of ultrametric trees (Section 2.5).

• The proof of the ⇐ direction is constructive and it provides an algorithm for
creating an ultrametric tree from an ultrametric matrix. The existence of such an
algorithm enables the use of the particular constraint modelling that was used to
solve the supertree problem (Section 2.5.3).
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2.3 Species trees

The theory of evolution by natural selection (see [Daw06]) is an explanation of how
complex species could arise from simpler antecedents. The basic theory is that within
species individuals have different characteristics (or adaptations) due to genetic muta-
tion. Those adaptations that help their possessors to survive and reproduce will be
present in a higher proportion in the next generation compared to unhelpful adapta-
tions. This is by virtue of the fact that children inherit their parents’ genes and hence
their adaptations.

This alone is enough to explain how generations can adapt within species to changes
in their habitat, but it remains to explain how speciation can occur2. Speciation occurs
as a result of limited mating whereby adaptations are no longer spread approximately
uniformly through the gene pool and hence certain subgroups of the species can develop
certain adaptations in greater proportion. Selective mating can occur as a result of

• physical barriers whereby mating between the divided groups becomes impossible,
e.g. the formation of a dividing range of mountains or the disconnection of two
elevated areas of land by water;

• by sexual selection when individuals reproduce with other individuals who are in
some way similar to themselves, e.g. cichlid fish females that needlessly mate only
with similarly coloured males;

• human intervention, e.g. dog breeding;

• and many more. (see [Var07b] and [DW04])

These divergent subgroups will become separate species when each subgroup devel-
ops an adaptation that is individually neutral or positive, but which is negative when
combined with the other group’s adaptation. This is because the offspring of the two
populations have become unviable, individuals that do not interbreed will be advan-
taged, and a gene for this behaviour will tend to dominate the gene pool as a result.

Such speciation can be drawn as a rooted bifurcating tree (a species tree in the bio-
logical parlance), where internal nodes represent ancestral species and leaves represent
new species3. See Figure 2.4 for an example of this sort of tree.

A well-known example of this is the relationship between humans and the Pan group
containing chimps and bonobos (see Figure 2.5). Our most recent common ancestor
(m.r.c.a.) with the chimp was probably superficially more similar to chimps than to
humans. It is believed that the formation of the Rift Valley in Africa is the event that
heralded the divergence of the human and chimp lines. Contrary to popular belief, we
are not descended from chimps, but rather share this now extinct m.r.c.a. with them.
Chimps and bonobos are in turn commonly descended from a different m.r.c.a. which
is more recent than that of chimps and humans. Humans are equally closely related to
chimpanzees and bonobos.

This example demonstrates a few key features of species trees:

2Dawkins[DW04] defines a species by saying that two types of animals are different species when
they cannot together produce offspring. Hence a species is a set of animals where each (male,female)
pair could technically reproduce together. The meaning of “species” is a subject of much disagreement
amongst biologists but we can avoid getting bogged down in this discussion because the intuitive meaning
that they are the “same kind of animal” will suffice. For a general discussion see [DW04].

3Again, biologists would disagree with this because there is evidence to believe that genetic material
has jumped from subtree to subtree, creating a cycle. From example from page 395 of [DW04], cell
mitochondria used to be a free-living liveform, but it is now part of animal cells. This would create an
edge between two different subtrees.
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Figure 2.4: Charles Darwin’s first sketch of an evolutionary tree from his First Notebook
on Transmutation of Species (1837)

Human
(homo sapiens)

Chimpanzee
(Pan troglodytes)

Bonobo6 million years ago

2 million years ago

(Pan paniscus)

Figure 2.5: Tree of life fragment involving humans and chimpanzees. Dates taken from
[DW04]. Chimp images: H. Vannoy Davis c© California Academy of Sciences.
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1. they are bifurcating because groups split in two at divergence events;

2. the leaves are the resultant species;

3. the internal nodes are ancestral species that are assumed to be extinct (superceded
by the resultant species);

4. each pair of species has a m.r.c.a.;

5. if the internal nodes were labelled with a divergence date (e.g. years since the
formation of the planet) then the labels would increase on paths from the root;
and

6. a species tree need not contain every single species, but non-trivial trees contain
3 or more.

The clear correspondence between these facts and Definition 1 above demonstrate
that species trees are ultrametric. Hence in solving computational problems with species
trees we can exploit their dual representation as ultrametric matrices if this is worthwhile
for reasons of ease of programming or efficiency.

2.4 The supertree problem

We can now discuss the immediate background to the work presented in this report:
solving the supertree problem efficiently.

The supertree problem is to take a set S of species trees and to produce another
species tree T that contains all the species in S and is consistent with every tree in S.
Precisely, a tree U is consistent with the result T if and only if U = T ′′ where T ′′ is
obtained by doing the following:

1. Let R be the set of leaves of T that are in U .

2. Obtain T ′ by removing leaves from T that are not in R as well as any edges incident
to them.

3. To obtain T ′′: wherever there is a path consisting of degree 1 nodes in T ′, replace
it with a single edge.

For examples of compatible and incompatible trees see Figures 2.6 and 2.7.

2.4.1 Applications of the supertree problem

The supertree problem has practical applications in biology where systematists attempt
to build the complete tree of life. It would be too great a task for a person or group
of people, and the data doesn’t exist to automatically build a complete tree of life.
Hence only trees involving subsets of all species are available. A solution to the su-
pertree problem can be applied to these trees to obtain a supertree that conserves all
the relationships between the species. This is most worthwhile when input trees have
species in common, because it may allow new relationships to be inferred. For example
in Figure 2.8, tree S says that monkeys and men are more closely related to each other
than to mice, and tree T says that mice and moles are more closely related to each other
than to monkeys. From this we can infer that monkeys and men are closer to each other
than to moles (tree R in Figure 2.8)!
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R={a,d,e}
a d e

a b c d e

a d e

a d e

U

T

T’
T’’=U

Figure 2.6: An example of a tree U compatible with a tree T

a d e

a d c b e

a d e

U

T

T’
T’’=U

R={a,d,e}

a d e

Figure 2.7: An example of a tree U not compatible with a tree T

monkeymouse man

mouse mole man

mouse mole man monkey

Figure 2.8: Two trees and a supertree. Monkey and mole images: c© Dave Mangam.
Mouse image: George W. Robinson c© California Academy of Sciences
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Figure 2.9: The equivalence between triples and fans
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Figure 2.10: Overview of solutions to the supertree problem

2.4.2 Problems with real biological data

Methods used to derive trees may be approximate or subjective, hence different trees
may contradict each other. Biologists may be able to resolve these inconsistencies[KP02]
but our formulation of the supertree cannot produce a result.

Another problem is that although the tree of life ought to be strictly bifurcating, in
the absence of data biologists may make the m.r.c.a. for 3 or more species be the same.
This type of structure is called a fan. They are saying that they do not know which
species diverged first and they do not want to commit. Thankfully this is equivalent to
normal bifurcation and need not be treated separately. The equivalence is that a fan is
indistinguishable from two connected internal nodes with the same label, see Figure 2.9
for a demonstration. However our definition of an ultrametric tree was that the labels
strictly increase from the root and an implementation involving fans needs to remove
the strictness requirement.

2.5 Solutions to the supertree problem

A variety of algorithms for solving the supertree problem have been proposed (see
[NW96] for one of them). Recently in [GPSW03] and [Pro06] constraint programming
techniques have been applied to the problem with some success. In this section we will
describe some previous work in these areas and identify the specific problem this project
addresses.

Briefly, the approach taken in the above cited solutions is to break input trees up
into a minimal set of ultrametric trees of size 3 that describe them completely, and then
to find one or more trees compatible with all of these. For imperative and constraint
programming solutions the first stage is identical but the second stage is quite radically
different. See Figure 2.10 for an overview.
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a b c d
BREAKUP(                           )  

a c d
={(ab)c, (ac)d}={(ab)c} U BREAKUP(                 )

Figure 2.11: The BreakUp algorithm

2.5.1 1st stage—breaking up the input trees

The BreakUp algorithm presented in [NW96] takes as input a species tree and returns
a set of triples and fans that completely describe the tree. A triple (bc)a says that
species b and c are more closely related to each other than either is to a. A fan abc
says that a, b and c should be pairwise equally closely related. An understanding of
evolution suggests that fans should be impossible, however their purpose is not to assert
the relationship actually exists but to represent a lack of knowledge about what the
true relationship is (see Section 2.4.2). Hence abc can be read as “either (ab)c, (ac)b or
(bc)a”.

If m(x, y) is the m.r.c.a. function for the input tree then (ab)c means m(a, b) >
m(a, c) = m(b, c).

Details of the BreakUp algorithm are not important for this project, but for an
example execution see Figure 2.11.

Intuitively, the set of triples and fans produced by the BreakUp algorithm describe
relationships between certain subsets of the nodes, but it is possible to derive any re-
lationship that existed in the input tree by inference. This corresponds to an intuitive
understanding that the BreakUp algorithm retains all the information in the tree but
uses an alternative representation. In Figure 2.11 the relationship (bc)d does not appear
in the output but it can be inferred from the other triples as follows:

From (ab)c we have m(a, b) > m(a, c) = m(b, c) and from (ac)d we have m(a, c) >
m(a, d) = m(c, d). Hence m(b, c) = m(a, c) and m(a, c) > m(c, d) and so m(b, c) >
m(c, d).

From Theorem 1 we know that the m.r.c.a. function is ultrametric and so either
m(b, c), m(b, d) and m(c, d) are all the same or two are the same and one is greater.
Since m(b, c) > m(c, d) are different we can infer that m(b, c) and m(b, d) must be the
same, i.e. m(c, d) = m(b, d).

Hence m(b, c) > m(c, d) = m(b, d) and we have derived (bc)d as required.
We will now formalise this notion that the triples and fans describe the tree:

Theorem 3. The input tree T to the BreakUp algorithm is the unique tree compatible
with all of the triples produced by BreakUp.

Proof. Given in [NW96].

Corollary 1. Any relationship in the input tree T to BreakUp must be able to be
inferred from the result triples.

Proof. By equivalence of (ab)c and m(a, b) > m(a, c) = m(b, c), and Theorem 3.

2.5.2 2nd stage—solving the supertree problem

[NW96] describes an imperative algorithm using BreakUp as a preprocessing step.
This runs in around O(n3) time where n = the number of species in the tree4. This
algorithm can find either one solution or all solutions.

4The complexity proved in the paper is tighter than this, but here it is simplified because only the
fact that it is polynomial and the rough exponent matters for our purposes.
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Two slightly different constraint models have been proposed to solve slightly different
problems:

2.5.2.1 The [GPSW03] model

This model is intended to solve the basic supertree problem of taking a set of input trees
and constructing one or more trees consistent with all of them.

The variables are a symmetric n × n matrix M of integer variables with domains
1, . . . , n− 1 or 0 on the main diagonal. Variable M(i, j) is the depth of the m.r.c.a. of
species i and j. The reason for the 1, . . . , n− 1 domains is that these allow a distinct
label to be given to every layer containing leaf nodes in a tree with the maximum depth
of n− 1.

First, constraints are posted to make the whole matrix ultrametric, thus ensuring
that any resulting species tree is ultrametric:

M(i, j) > M(i, k) = M(j, k)
∨ M(i, k) > M(i, j) = M(j, k)
∨ M(j, k) > M(i, j) = M(i, k)
∨ M(i, j) = M(i, k) = M(j, k)

(2.1)

for each i < j < k. Furthermore for each triple (ij)k the constraint

M(i, j) > M(i, k) = M(j, k) (2.2)

is posted and for each fan ijk

M(i, j) = M(i, k) = M(j, k) (2.3)

is posted. These constraints break the disjunctions of 2.1 to allow a meaningful solution.
The model has n2

−n
2 variables and

t + f + C(n, 3) = t + f +
n(n− 1)(n− 2)

6
= O(n3) + O(n3) + O(n3) = O(n3) (2.4)

constraints, where t is the number of triples and f the number of fans. There are
O(n3) of each because each one breaks the disjunction in at most one constraint from
Equation 2.1, and there are O(n3) of them.

2.5.2.2 The [Pro06] model

This model sets out to solve a slightly different problem where instead of the M variables
representing a depth in the tree, they represent a possible range of divergence dates for
that internal node. This means that using the M variables as search variables would
not work because we do not want them to be instantiated. Instead they should contain
a possible range of values. For this reason an auxiliary D(i, j, k) variable is added for
each i < j < k, each has a domain of 1, 2, 3, 4 and represents the relationship choice
made for the 3 species. 1 means that i and j are most closely related, 2 that i and k
are closest, 3 that j and k are closest and 4 that all 3 are equally close. This is encoded
by replacing the constraints in Equation 2.1 with

D(i, j, k) = 1 ∧M(i, j) > M(i, k) = M(j, k)
∨ D(i, j, k) = 2 ∧M(i, k) > M(i, j) = M(j, k)
∨ D(i, j, k) = 3 ∧M(j, k) > M(i, j) = M(i, k)
∨ D(i, j, k) = 4 ∧M(i, j) = M(i, k) = M(j, k)

(2.5)
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and making D be the search variables.
Another difference is that instead of posting the constraints in Equations 2.2 and

2.3 the triples and fans can be posted by instantiating a D variables, e.g. for fan (ij)k
set D(i, j, k) to 1.

The number of ultrametric constraints in this model is still O(n3), but each is more
complex. All the constraints for triples and fans have been removed.

2.5.3 3rd stage—Producing a tree

Using the constructive proof of the ⇐ direction of Theorem 2 a tree can be produced
from the ultrametric matrix of variables and this tree is the final result.

2.5.4 Advantages and disadvantages of a CSP encoding and the aims

of this project

The main motivation for a CSP solution to a problem is that models are comparatively
easy to derive and to change, whereas imperative solutions can be very resistant to the
addition of side constraints. A case in point is that the addition of ancestral divergence
dates which is almost trivial in CP would require a complete rethink of an imperative
solution. It also becomes easier to optimise solutions by a scoring function, perhaps to
weight tree evidence according to biologists’ confidence in it and so produce the tree
with the greatest overall weight of evidence.

Some drawbacks with the constraint solution to the supertree problem is that the
worst case time complexity may be as poor as O(nn2

) and the space complexity is O(n3)
with a large constant factor. The practical repercussion of this is that modest sized
species data cannot be loaded into the memory of a typical workstation, and that the
algorithm from [NW96] can solve problems in reasonable time that the constraint model
cannot. Later in this report we will show that for both constraint models the worst
case space complexity has been improved to O(n2). Furthermore, a preliminary result
regarding the time complexity of the first model has improved it to O(n4). Another
possible improvement to the specific modelling presented in [Pro06] is that it may be
possible to maintain a higher level of consistency in the ultrametric constraints, thus
reducing the size of the search space.

This project is a contribution towards solving these problems of time complexity and
space complexity and a contribution towards a better understanding of the constraint
model as a whole. This was achieved by designing and implementing custom constraints
for Equations 2.1 and 2.5 doing generalised bounds arc consistency. Next they were
adapted to occupy constant space. Finally a comparative study of these different con-
straints to the benchmark implementation was carried out.



Chapter 3

3 variable constraints

“After three leaps, even a toad needs a rest.”— Chinese proverb

In this section several designs of 3 variable ultrametric constraints will be presented,
proved correct and implemented.

3.1 Introduction

The ultrametric constraint on 3 variables (henceforth, Um-3) constrains 3 variables x,
y and z as follows:

x > y = z
∨ y > x = z
∨ z > x = y
∨ x = y = z

(3.1)

The intuition to bear in mind for this is that it makes sure that there is a tie for the
least element of the three, i.e. either all three are the same, or two are the same and the
other is greater.

A pre-existing Um-3 constraint from work by Prosser and others (see [GPSW03]
and [Pro06]) implemented in JChoco is the baseline against which the new constraints
presented in this chapter are to be measured. It is described in Section 3.3 to set
the scene. The problem with the constraint is that it is implemented as a compound
constraint involving 23 others1, and uses approximately 23 times the space that a single
Um-3 constraint would. The huge reduction is memory usage that would result from use
of a custom constraint would allow larger species problems to be loaded and in addition
it might achieve the same or better propagation in less time, meaning problems could
be solved quicker.

In addition to this improvement, the particular circumstance where this constraint is
to be used in the species model can be exploited by the use of a whole matrix constraint.
Now the whole matrix could be constrained to be Um in constant space and so the
memory occupied by the whole model would be improved from O(n3) to O(n2), since it
is now dominated by the constant space required for each variable in the matrix, rather
than the constraints on it. The matrix constraint may also run faster than the custom
constraint and will maintain the same level of consistency.

Finally we will see an experimental forward checking constraint that was originally
intended as a straw man but ended up being surprisingly effective in practice, as will be
shown in Sections 5.1.3 and 5.2.2.7.

1Count the occurences of pb.and, pb.eq, pb.gt and ty.or in Listing 3.1 to see how many constraints
are involved in the whole thing.

24
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1 //Put together a few built -in constraints to do ultrametric constraint

2 // over 3 variables .

3 public class ToolkitUm3 {

4 public static Constraint makeUltrametric(IntDomainVar x, IntDomainVar y,

5 IntDomainVar z) {

6 AbstractProblem pb = x.getProblem ();

7 Constraint U1 = pb.and(pb.eq(y,z),pb.and(pb.gt(x,y),pb.gt(x,z)));

8 Constraint U2 = pb.and(pb.eq(x,z),pb.and(pb.gt(y,x),pb.gt(y,z)));

9 Constraint U3 = pb.and(pb.eq(x,y),pb.and(pb.gt(z,x),pb.gt(z,y)));

10 Constraint U4 = pb.and(pb.eq(x,y),pb.and(pb.eq(x,z),pb.eq(y,z)));

11 Constraint U5 = pb.or(U1,pb.or(U2 ,pb.or(U3 ,U4)));

12 return U5;

13 }

14 }

Listing 3.1: Implementation of Toolkit-Um-3

3.2 Expected and intended behaviour of the UM-3 con-

straint

Theorem 4. When each variable has the same domain 1, . . . , n then the number of
distinct satisfying assignments for Um-3 is 1

2n(3n− 1).

Proof. Either all the values in the assignment are the same, or the largest value is in
one of three positions and the other two must be smaller. In the former case there
are n assignments, one for each value in the domain of the variables. In each of the
latter cases, the larger value can be assigned n, n− 1, . . . , 2 and these leave respectively
n− 1, n− 2, . . . , 1 ways to assign the remaining two variables identically. Hence by the
sum rule[Ros98] there are (n − 1) + (n − 2) + . . . + 1 = 1

2n(n− 1) ways to assign in
each of these cases. Hence, by another application of the sum rule, overall there are
n + 31

2n(n− 1) = 1
2n(3n− 1) assignments as required.

This fact suggests an informal way to test implementations of the Um-3 constraint,
by ensuring that it returns the correct number of solutions when posted over 3 variables
with domains 1, . . . , n. Furthermore this equation gives a quantitative measure of the
tightness of the Um-3 constraint because the number of correct instantiations is 1

2n(3n−
1) out of n3 in total.

More confidence in an implementation can be provided by proving the theoretical
correctness of a constraint. This involves proving that no values are removed from
domains during propagation that could be part of a solution. All the constraints in this
chapter are either evidently correct, or a proof is provided. In some cases proofs will
be given that a constraint maintains a certain level of consistency, for example to prove
that a binary constraint maintains AC we must prove that after propagation any and
all values in both domains are supported by at least one value in the other domain. This
notion generalises in an obvious way to other levels of consistency.

3.3 The TOOLKIT-UM-3 constraint

The toolkit constraint uses inbuilt constraints provided by JChoco. It is trivially easy
to create and the general idea is guaranteed to be correct since the definition of the
constraint in code is almost identical to the mathematical definition. There remains a
slight possibility that a particular solver will be incomplete or unsound, but if this was
the case no constraint implementation could ever be guaranteed to be correct!

The implementation in Listing 3.1 is a factory for Um constraints, the resulting
constraint should be posted by the caller. There is a clear equivalence between this
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implementation and Equation 3.1, except that in each conjunction the 3rd constraint is
redundant2.

3.4 The CUSTOM-UM-3 constraint

In this section, we will describe the design of a Um-3 constraint maintaining generalised
bounds arc consistency (GBAC). GBAC is a combination of BAC and GAC; what it
means for an n-ary constraint is that the upper and lower bounds of each variable must
be involved in a satisfying assignment with arbitrary values in all of the other n − 1
variables, i.e. they must be supported. There remains the possibility that a value in the
middle of a domain could be unsupported.

3.4.1 Analysis of cases for lower and upper bounds

Once propagation is complete each bound b must be supported, either

• by v the same as it and w greater than it (b = v < w), or

• by v and w the same as it (b = v = w), or

• by v and w smaller than it (b > v = w).

Since this is a very important notion and to recapitulate, this means that every bound
must be associated with a value in each of the other two domains so that there is a tie
for the minimum among the 3 values. An unsupported bound must be removed from the
domain and a supported bound must not be removed. Due to the properties of the search
algorithms propagation is not done when any domain is empty (see Section 3.4.2.1).

We will first present the procedure LBFix (Listing 3.2) used to make sure all lower
bounds (l.b.s) are supported, then show why it works. The intuitive understanding
of the procedure is that when an l.b. is strictly less than the other two, it cannot be
supported because in Um there is always a tie for the minimum value in 3. By removing
this overhang the l.b.s support each other and the job is done.

1 let s be the smallest lower bound

2 let m be the middle lower bound

3 let l be the largest lower bound

4 if(s is less than both m and l)

5 s:= m

Listing 3.2: Pseudocode for lower bound propagation procedure LBFix for Custom-

Um-3

The possible states of lower bounds when LBFix is applied can be divided into 13
cases (Figure 3.2), some of which are symmetric (1-6 and 8-10). The reason why these
cover all possibilites is that either all the l.b.s are different (1-6), or two are the same
and one different (8-13), or all three are the same (7); and that these possibilities can
be reordered over the 3 variables.

These cases show the relationships between the lower bounds at a point in time when
some bounds may be unsupported. What these diagrams are not supposed to suggest is
that, for example in case 1, the bounds differ by 1. Rather when two bounds are lined
up they are the same bound and when one is different from another they are different
by some non-zero but unspecified amount. Hence they describe the relationship and not
actual values. This intuition is fleshed out in Figure 3.1.

2For reasons unknown, the constraint maintains a lower level of consistency without the redundant
constraints. This may not be the case in other constraint toolkits and this issue underlines how unpre-
dictable the behaviour of constraint solvers can be.
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Figure 3.1: The intuition for understanding box diagrams
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Figure 3.2: Cases for analysis of lower bounds in Um-3

Lemma 1. The changes made to lower bounds by LBFix remove all unsupported values
and no supported values are removed.

Proof. In cases (1)-(6) the lower bounds are distinct, the red shaded range is unsup-
ported. LBFix sets s ← m and so the unsupported range is removed. The new l.b.s
shaded in green are mutually supportive in the u > v = w configuration. In case (7) each
l.b. is supported in the u = v = w configuration and LBFix makes no changes. In cases
(8)-(10) each is supported in the u > v = w configuration and no changes are made.
Finally, in cases (11)-(13) the red shaded range is unsupported but LBFix’s effect is to
remove it and the new lower bounds shaded in green are mutually supportive.

The corresponding procedure UBFix for upper bounds is only slightly more complex
(Figure 3.3):

1 let s, m and l be the smallest , middle and largest u.b.s respectively

2 (breaking ties arbitrarily )

3 let S, M and L be the domains containing s, m and l respectively

4 if(s is less than both m and l)

5 if(S and L have null intersection)

6 m:= s;

7 else if(S and M have null intersection)
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Figure 3.3: Cases for analysis of upper bounds in Um-3

8 l:= s;

Listing 3.3: Pseudocode for upper bound propagation procedure UBFix for Custom-

Um-3

The possible starting states for UBFix can be summarised by the 13 cases shown in
Figure 3.3.

Lemma 2. The changes made to upper bounds in carrying out UBFix remove all
unsupported values and no supported values are removed.

Proof. Let S, M and L be the domains with least, middle and greatest upper bounds,
breaking ties arbitrarily. Let s, m and l be the upper bounds of S, M and L respectively.

Cases (7) and (11)-(13): the upper bounds are mutually supportive, and no changes
result from the procedure.

Cases (1)-(6): If the gold shaded portion of the domain M is unsupported then line 5
of UBFix will trim it. The new upper bounds l, s and s of L, M and S are
mutually supportive.

If the gold shaded portion of M is supported and the magenta shaded portion of
L is not supported then it is trimmed by line 7 of UBFix. The new upper bounds
s, m and s of L, M and S are mutually supportive.

If the gold shaded portion of M and the magenta shaded portion of L are both
supported then S ∩ L 6= φ and S ∩M 6= φ and so no changes result from UBFix.

Cases (8)-(10): Suppose w.l.o.g. that L is the domain shaded magenta and M the
domain shaded gold.

If S∩L = φ and S∩M = φ then the first conditional branch at Line 4 is executed.
This results in line 5 removing the whole of domain M and this is correct because
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no values in M or L equal any value in S and so there can be no tie of minimum
and no possible instantiation.

If S ∩ L = φ then the magenta region can only ever be the maximum of three.
Hence the gold region is unsupported and is removed. This change means the u.b.s
are mutually supportive.

For S ∩M = φ, the argument is symmetric.

3.4.2 The propagation algorithm

Having proved these two Lemmas 1 and 2 about LBFix and UBFix the entire propa-
gation algorithm (Listing 3.4) can be presented:

1 if(receive notification of change in lower bound)

2 do LBFix

3 do UBFix

4 else if(receive notification of change in upper bound )

5 do UBFix

Listing 3.4: Pseudocode for Custom-Um-3 propagation

This works because a change to an upper bound can only affect the support for
other upper bounds, but a change to a lower bound can affect the support for both
lower and upper bounds. It would be correct to cycle between fixing lower and upper
bounds repeatedly until all were supported, but we can save the effort of checking by
being careful only to do the minimum necessary work.

Lemma 3. It is possible for a change in a lower bound to result in the loss of support
for another lower bound.

Proof. All the bounds in the diagram have support, but when the red shaded l.b. is lost
the gold shaded l.b. loses support.

Lemma 4. It is possible for a change in a lower bound to result in the loss of support
for an upper bound.

Proof. All the bounds in the diagram have support, but when the red shaded l.b. is lost
the gold shaded u.b. loses support.

The existence proof of Lemma 4 does not adequately capture why this should be the
case. The reason is that upper bounds may not be mutually supportive, meaning that
the loss of l.b. may remove support for a u.b. The opposite of the Lemma is not true,
because, as we will prove in Corollary 2, a change in an upper bound cannot possibly
cause the loss of support for any lower bound.
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Lemma 5. It is possible for the loss of an upper bound to cause the loss of support for
another upper bound.

Proof. All the bounds in the diagram have support, but when the red shaded u.b. is lost
the gold shaded u.b. loses support.

Lemma 6. When lower bounds are supported, they support each other.

Proof. Consider 3 supported lower bounds. Suppose for a contradiction that the two
least of these are distinct. One of these is distinct lowest and it cannot be supported on
account of the fact that it is not equal to anything or larger than anything. Therefore
by contradiction the two least must be equal. However the other l.b. is at least as large
as these, so the l.b.s are mutually supportive.

As well as having an elegant little proof, this property of the algorithm will be of key
importance in later work, when we suggest that with the addition of the new constraint
having this property, AC is now sufficient to solve the supertree problem without search.

Corollary 2. It is impossible for a change in an upper bound to result in the loss of
support for a lower bound.

Proof. By Lemma 6 an l.b. retains support as long as the other l.b.s are intact, hence
losing an upper bound has no effect.

This Corollary suggests that a further improvement on the algorithm in Listing 3.4
is to execute Line 3 if and only if the l.b. lost is the only remaining support for a u.b.
However, the conditionals intrinsic in UBFix amount to much the same thing and there
is little point in repeating them.

The point of all these proofs has been to build up a complete proof of correctness
and proof of GBAC status for the Custom-Um-3 constraint:

Theorem 5. The procedure in Listing 3.4 does GBAC propagation for the Custom-

Um-3 constraint.

Proof. The first thing to establish is that no values are removed from domains during
propagation that could be part of a solution, this is immediate from Lemmas 1 and 2
because any values are removed as a result of the corresponding procedures.

The next thing to establish is that the lower bounds are made as big as possible and
the upper bounds as small as possible. In the case of the lower bounds, by Lemma 3 and
Corollary 2 we know that only the loss of a lower bound can result in the need to change
a lower bound during propagation. Also, by Lemma 1 the lower bound procedure makes
the lower bounds as large as possible. Hence the algorithm in Listing 3.4 propagates in
all the necessary cases and does the largest possible amount of propagation, as required.

In the case of upper bounds, by Lemmas 4 and 5 the loss of either a lower or upper
bound can result in the need to change an upper bound. By Lemma 2 the upper
bound procedure makes the upper bounds as small as possible. Hence the propagation
algorithm in Listing 3.4 propagates in all the necessary cases and does the largest possible
amount of propagation, as required.

This propagation algorithm runs in O(1) time.
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3.4.2.1 A note on domain wipeouts

If at any point in propagation a domain empties, propagation will stop and the search
algorithm will backtrack. Domain wipeouts complicate matters because it might seem as
though l.b.s and u.b.s are changing simultaneously, but in fact the propagation algorithm
will never be invoked and so it doesn’t matter.

3.4.3 Implementation

A Java implementation of the constraint conformant with the JChoco library is shown
in Listing 3.5.

Line 1 The constraint indirectly implements the AbstractIntConstraint interface, so
it can be posted into a JChoco model.

Lines 2-7 An object of this class represents a sequence of 3 variables, which will be
sorted by lower or upper bound.

Lines 8-10 Notify the parent class of the variables the constraint is posted over, this
is how the new constraint arranges to receive propagation events.

Lines 11-14 Implement fragment of propagation algorithm in Listing 3.4 that does
l.b. propagation.

Lines 15-19 Implement the rest of Listing 3.4 to do u.b. propagation.

Lines 20-24 Before search commences, arc consistency is established and in the process
this method will be invoked. First fix the lower bounds and then the upper bounds.
Since change in u.b.s can’t affect support for l.b.s this is sufficient.

Lines 25-29 Instantiation is when a domain is reduced to a single value and it is like
both the lower and upper bounds changing. It suffices to check both bounds in a
safe order.

Lines 30-36 Ignore loss of non-bound values.

Lines 37-44 Straightforward implementation of LBFix.

Lines 45-56 Straightforward implementation of UBFix.

The utility function nullIntersection() in Listing 3.6 returns true if and only if
the two variables it is supplied with have non-overlapping domains. It works by checking
whether the lower bound of either domain is strictly greater than the upper bound of
the other.

The function sortOnInf() in Listing 3.7 takes 3 variables and returns them in sorted
order by lower bound. It uses a fixed comparison sorting procedure for 3 elements that
uses at most 3 comparisons for any input. This procedure is optimal in terms of the
worst case number of comparisons, because if there was to be a procedure that used at
most 2 comparisons the “fattest” decision tree with depth 2 would have only 4 leaves
and hence could not produce 3! = 6 different results. Since this procedure is run at least
once per propagation it pays to make it as fast as possible.
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1 public class CustomUm3 extends AbstractTernIntConstraint {

2 private class Triple {

3 IntDomainVar s, m, l;

4 public Triple (IntDomainVar s, IntDomainVar m, IntDomainVar l) {

5 this.s = s; this.m = m; this.l = l;

6 }

7 }

8 public CustomUm3 ( IntDomainVar v0 , IntDomainVar v1 , IntDomainVar v2) {

9 super(v0 , v1 , v2);

10 }

11 // called whenever an inf is changed

12 public void awakeOnInf (int idx) throws ContradictionException {

13 fixInfs ();

14 }

15 // called whenever a sup is changed

16 public void awakeOnSup (int idx) throws ContradictionException {

17 fixInfs ();

18 fixSups ();

19 }

20 // initial propagation , just check uppers and lowers

21 public void awake () throws ContradictionException {

22 fixInfs ();

23 fixSups ();

24 }

25 // when variable index <idx > is instantiated , just check both bounds

26 public void awakeOnInst (int idx ) throws ContradictionException {

27 fixInfs ();

28 fixSups ();

29 }

30 public void awakeOnRem (int idx , int x) throws ContradictionException {

31 ;

32 }

33 public void awakeOnRemovals(int idx , IntIterator deltaDom )

34 throws ContradictionException {

35 ;

36 }

37 private void fixInfs () throws ContradictionException {

38 Triple si = sortOnInf ();

39 int sInf = si.s.getInf ();

40 int mInf = si.m.getInf ();

41 int lInf = si.l.getInf ();

42 if(sInf != mInf && mInf != lInf)

43 si.s.setInf (mInf);

44 }

45 private void fixSups () throws ContradictionException {

46 Triple ss = sortOnSup ();

47 int sSup = ss.s.getSup ();

48 int mSup = ss.m.getSup ();

49 int lSup = ss.l.getSup ();

50 if(sSup != mSup) {

51 if(nullIntersection(ss.l, ss.s))

52 ss.m.setSup (sSup);

53 else if(nullIntersection(ss.m, ss.s))

54 ss.l.setSup (sSup);

55 }

56 }

57 }

Listing 3.5: Implementation of Custom-Um-3

1 // return true if and only if v and w’s domains have null intersection

2 private static boolean nullIntersection(IntDomainVar v, IntDomainVar w) {

3 return v.getInf () > w.getSup () || v.getSup () < w.getInf ();

4 }

Listing 3.6: A procedure to discover whether two domains have a null intersection
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1 private Triple sortOnInf () {

2 int v0Inf = v0.getInf ();

3 int v1Inf = v1.getInf ();

4 int v2Inf = v2.getInf ();

5 if(v0Inf <= v1Inf )

6 if(v1Inf <= v2Inf)

7 return new Triple (v0 , v1 , v2);

8 else

9 if(v0Inf <= v2Inf)

10 return new Triple (v0 , v2 , v1);

11 else

12 return new Triple (v2 , v0 , v1);

13 else

14 if(v0Inf <= v2Inf)

15 return new Triple (v1 , v0 , v2);

16 else

17 if(v1Inf <= v2Inf)

18 return new Triple (v1 , v2 , v0);

19 else

20 return new Triple (v2 , v1 , v0);

21 }

22
23 private Triple sortOnSup () {

24 // symmetric with sortOnInf ()

25 }

Listing 3.7: Implementation of optimal comparison sorting procedure for 3 items

3.5 The MATRIX-UM-3 constraint

In the species model, the constraint Um-3(M(i, j),M(i, k),M(j, k)) is posted over the
matrix M for indices i < j < k. This regular pattern can be exploited by a whole matrix
Um-3 constraint which we will call Matrix-Um-3. On the receipt of a propagation event
for a variable M(i, j), it will do normal Um-3 propagation on variables M(i, j), M(i, k)
and M(j, k) for all indices 1 ≤ k ≤ n s.t. k 6= i and k 6= j, i.e. exactly the same triples
that would previously have had an explicit constraint over them.

For example if n = 4 and a change occurs in M(1, 2) then Um-3 propagation is done
for

M(1,2), M(1,3) and M(2,3) and
M(1,2), M(1,4) and M(2,4)

but not for

M(1,2), M(1,1) and M(2,1) and
M(1,2), M(1,2) and M(2,2)

The reason for the improvement in memory usage is that an explicitly stored exten-
sional representation of which constraints have been posted using O(n3) space is being
replace by a dynamically (and efficiently) generated intensional representation using
code occupying O(1) space.

The constraint is effectively mimicking part of the AC-3 algorithm since it:

1. Receives a propagation event on a variable.

2. Identifies which constraints are over that variable.

3. Arranges for the necessary propagation to be done.

If the constraint makes any changes to domains then these changes are propagated by
JChoco’s underlying AC algorithm.

This propagation algorithm runs in O(n) time, since it may need to revise n − 2
domains and each revision runs in O(1) time, as was stated in Section 3.5.
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3.5.1 Expected behaviour of MATRIX-UM-3

From [Fel78], the number of bifurcating trees with n leaves is

(2n− 3)!

2n−2(n− 2)!
(3.2)

Provided that only a single Um matrix corresponding to each “shape” of tree is
found (see Figure 5.1(d) for an example of different Um trees with the same shape),
the number of solutions to Matrix-Um-3 posted over a n× n matrix of {1, . . . , n− 1}
variables is given by Equation 3.2. However the standard model does not remove this
symmetry and further constraints would be required to do this.

An alternative way to test the constaint is by comparing results for a single Matrix-

Um-3 constraint with result for a matrix-full of any other Um-3 constraints; they should
get exactly the same solutions.

3.5.2 Implementation

The implementation of the Custom-Um-3 (Listing 3.5) makes use of variables v0, v1
and v2 which tell it which variables it is posted over; these are its sole state. Hence as
an implementation trick, we can copy the body of class CustomUm3 verbatim into the
body of a matrix constraint class and then manipulate these variables to convince the
old CustomUm3 code that it’s doing the same job it always did.In fact, it is responsible
for propagating several of these old-style constraints! In detail, if the matrix constraint
wants to propagate changes to M(i, j) it will set v0 ← M(i, j), v1 ← M(i, k) and
v2 ← M(j, k) for each k in turn and call fixLowers() and fixUppers() to propagate
into neighbouring variables each time.

This key part of the implementation is reproduced in Listing 3.8. doPropagate() is
invoked whenever the constraint receives a propagation event affecting lower or upper
bounds. See Listing C.1 in Appendix C for a complete code listing of Matrix-Um-3.

1 private void doPropagate (int idx) throws ContradictionException {

2 v0 = getIntVar (idx);

3 int [] index = varToIndex .get(v0); // index of v0 in M

4 int i = index [0]; int j = index [1];

5 for (int k = 0; k < n; k++) {

6 if(i != k && j != k) {

7 v1 = mat[i][k];

8 v2 = mat[j][k];

9 fixLowers ();

10 fixUppers ();

11 }

12 }

13 }

Listing 3.8: Excerpt from implementation of Matrix-Um-3

3.6 A lazy custom constraint

The implementation of constraints is a tradeoff between the number of nodes in the
search tree (which is determined by consistency level) and the time spent at each node
(which is dictated by the time to run the propagation algorithm). Hence even if a lazy
constraint increases the size of a search tree it can still beat an eager constraint that
takes a long time to run. This observation leads to the Lazy-Um-3 constraint that waits
until two of the variables it acts over are instantiated before it does any propagation at
all. This is what a forward checking constraint would do.

The constraint does nothing until it receives two notifications that variables have
been instantiated. At this point the domains could be in one of three states enumerated
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Figure 3.4: Cases in the analysis of Lazy-Um-3

in Figure 3.4, where in each case the two leftmost variables are instantiated; supported
and unsupported values in the rightmost domain are coloured green and red respectively.
Justification of this is by inspection bearing in mind the definition of Um. The constraint
simply reduces the rightmost domain to contain only the shown supported values.

An O(1) implementation of this is provided in Listing 3.9, but the following is a
line-by-line account of the interesting implementation issues:

Lines 6-12 Ignore propagation events other than instantiations.

Lines 14-20 Function to return the number of instantiated variables. The reasoning
behind the implementation of this function is surprisingly subtle. It might seem
as though the number of instantiated variables could be tallied in a local variable,
however the search algorithm could backtrack at anytime (thus un-instantiating
a few variables) and the tally would become meaningless. Another tactic would
be to use backtrackable storage which is restored to ancestral values when search
backtracks, but this is fiddly and introduces overheads to the search process. In-
stead in this implementation the answer is worked out from scratch every time
based on current variable state maintained by the search process.

Lines 43-62 Once two variables are instantiated, awakeOnInst() checks for the 3 cases
shown in Figure 3.4 and does the propagation indicated in the diagram.

3.7 The TOOLKIT-UM-3 constraint revisited

The Toolkit-Um-3 constraint presented in Section 3.3, Custom-Um-3 from Sec-
tion 3.4 and Matrix-Um-3 from Section 3.5 should all get the same answers, but
how much benefit do the latter confer? In fact, we will show below that Toolkit-Um-

3 does not enforce GBAC in any of the JChoco, ILog or ECLiPSe solvers. Hence
a potentially large improvement in the number of nodes needed during search has been
obtained. Furthermore in Chapter 5 empirical results will show that Custom-Um-3 also
runs much faster at each node.

An example problem x = {1, 2, 3}, y = {2, 3} and z = {3} with constraint Toolkit-

Um-3 was tried in the 3 toolkits listed above. No propagation happens in any of them.
However when Custom-Um-3 is posted instead, 1 ∈ x is correctly removed by propa-
gation.
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1 public class LazyUm3 extends AbstractTernIntConstraint {

2 public LazyUm3 (IntDomainVar v0 , IntDomainVar v1 , IntDomainVar v2) {

3 super(v0 , v1 , v2);

4 }

5
6 public void awake () throws ContradictionException { ; }

7 public void awakeOnBounds(int idx) throws ContradictionException { ; }

8 public void awakeOnInf (int idx) throws ContradictionException { ; }

9 public void awakeOnRem (int idx , int val) throws ContradictionException { ; }

10 public void awakeOnRemovals(int idx , IntIterator vals)

11 throws ContradictionException { ; }

12 public void awakeOnSup (int idx) throws ContradictionException { ; }

13
14 public int countInstantiated () {

15 int c = 0;

16 if(v0.isInstantiated()) c++;

17 if(v1.isInstantiated()) c++;

18 if(v2.isInstantiated()) c++;

19 return c;

20 }

21
22 // return the variables v0 , v1 and v2 in an array with the instantiated ones

23 // before the uninstantiated ones

24 public IntDomainVar[] orderInst () {

25 IntDomainVar[] vs = new IntDomainVar [3];

26 int s = 0; //number of entries put at the beginning of array so far

27 int e = 0; //number of entried put at the end so far

28 if(v0.isInstantiated())

29 vs[s++] = v0;

30 else

31 vs[2-(e++) ] = v0;

32 if(v1.isInstantiated())

33 vs[s++] = v1;

34 else

35 vs[2-(e++) ] = v1;

36 if(v2.isInstantiated())

37 vs[s] = v2;

38 else

39 vs[2-e] = v2;

40 return vs;

41 }

42
43 public void awakeOnInst (int idx ) throws ContradictionException {

44 //If zero or one variables are instantiated do nothing , if everything is

45 // instantiated then we must previously have made sure that the remaining

46 //domain was fine . However if 2 are instantiated then we ensure that

47 //everything in the last uninstantiated variable is permissible .

48 if(countInstantiated () == 2) {

49 IntDomainVar[] instVars = orderInst ();

50 int i0 = instVars [0]. getVal (); int i1 = instVars [1]. getVal ();

51 if(i0 > i1) {

52 instVars [2]. setInf (i1);

53 instVars [2]. setSup (i1);

54 } else if(i1 > i0) {

55 instVars [2]. setInf (i0);

56 instVars [2]. setSup (i0);

57 } else { //i0 == i1

58 instVars [2]. setInf (i0);

59 }

60 }

61 }

62 }

Listing 3.9: Implementation of Lazy-Um-3
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In fact whatever level of consistency Toolkit-Um-3 enforces, it must be less than
GBAC. This is becase each individual constraint in the model (like < and or) is doing
no more than BAC, and so they cannot do more than GBAC together. From above
Toolkit-Um-3 has been observed doing doing less propagation than Custom-Um-3,
which does GBAC. Hence Toolkit-Um-3 must be doing strictly less than GBAC.

In fact, tests have shown that Toolkit-Um-3 never trims l.b.s under any circum-
stances, although it correctly trims u.b.s correctly in all cases. See Appendix A for the
details.



Chapter 4

4 variable constraints

“Even a toad has four ounces of strength.”— Chinese proverb

4.1 Introduction

As described in Section 2.5.2.2, in [Pro06] the species model from [GPSW03] was aug-
mented so that the main ultrametric matrix M could hold ranges of values (correspond-
ing to ranges of possible ancestral divergence dates) and the search variables changed
to be a 3-D vector D of decision variables. In this model, for each i < j < k there is a
decision variable Dijk which holds values describing the relationship between variables
Mij , Mik and Mjk. The constraint posted to achieve this is as follows:

d = 1⇔ v1 > v2 = v3

∧ d = 2⇔ v2 > v1 = v3

∧ d = 3⇔ v3 > v1 = v2

∧ d = 4⇔ v1 = v2 = v3

(4.1)

Henceforth, this will be referred to as the Um-4 constraint. The intuition for the d
values is to think of 1 ∈ d saying that v1 is/can be greatest, 2 ∈ d saying that v2 is/can
be greatest, 3 ∈ d saying v3 is/can be greatest, and finally 4 ∈ d representing the final
possibility of them all being equal.

What this means is that a value in d is supported only when the v’s have values that
can achieve that relationship, e.g. 4 is supported if each of the 3 domains contain some
value v. Conversely, a v variable is supported if it takes part in a relationship specified
by one of the d values, e.g. v1 can hold the distinct maximum out of v1, v2 and v3 as
long as d holds 1. The meaning of this in a species model is that the d variable records
the species’ relationship (e.g. m.r.c.a. 1 is more recent than m.r.c.a. 2 or 3) and the m
variables hold ranges of dates when this m.r.c.a. could have diverged (e.g. m.r.c.a. 1
between times 1 and 3 and m.r.c.a 2 between 0 and 2). Since this is rather subtle some
example are shown in Figure 4.1. In each case, the green shaded regions are supported,
but the red regions are not. In 4.1(a), 4 ∈ d is unsupported because there is no value
equal in all the domains, whereas in 4.1(b) this is not the case. In 4.1(c), the u.b. of v2

is unsupported but in 4.1(d) is it supported by 2 ∈ d.
If Um-4 is posted with d = {1, 2, 3, 4} then it is equivalent to Um-3 as far as the v’s

are concerned.
Theorem 4 in Section 3.2 states that there are 1

2n(3n− 1) distinct instantiations of
the Um-3 constraint. This expression also gives the number of distinct instantiations of
the Um-4 constraint because the v’s uniquely determine d. The equation provides an
informal method of testing the correctness of an implementation of the constraint.

38
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Figure 4.1: Some examples of supported and unsupported values in Um-4

1 public class ToolkitUm4 {

2 public static Constraint makeFourVar ( IntDomainVar x, IntDomainVar y,

3 IntDomainVar z, IntDomainVar d) {

4 AbstractProblem pb = x.getProblem ();

5 return pb.and (pb.ifOnlyIf (pb.eq(d , 1),

6 pb.and(pb.gt(x, y),

7 pb.and (pb.gt(x, z),

8 pb.eq(y, z))),

9 pb.ifOnlyIf (pb.eq(d , 2),

10 pb.and(pb.gt(y, x),

11 pb.gt(y, z),

12 pb.eq(x, z))),

13 pb.ifOnlyIf (pb.eq(d , 3),

14 pb.and(pb.gt(z, x),

15 pb.gt(z, y),

16 pb.eq(x, y))),

17 pb.ifOnlyIf (pb.eq(d , 4),

18 pb.and(pb.eq(x, y),

19 pb.eq(x, z),

20 pb.eq(y, z))));

21 }

22 }

Listing 4.1: Implementation of Toolkit-Um-4

4.2 The TOOLKIT-UM-4 implementation of UM-4

The baseline implementation based on Prosser’s1 is shown in Listing 4.1. It suffers from
a similar problem to Toolkit-Um-3—extravagant memory usage (see Section 3.3).
The same approach will be used in solving the problem this time around: a custom
constraint.

Another motivation for the production of a custom constraint is that in the new
species model it is essential for the Um-4 constraint to maintain a certain consistency
level. With the old Um-3 version it didn’t matter to the final result if the consistency
level was less than GAC during search2, because a final result was always fully instanti-
ated. However now the v’s may not be instantiated and so if they are inconsistent with d
at the end then the result may be incorrect. Hence a Um-4 constraint suitable for use in
the species model must guarantee a level of consistency such as GAC or GBAC which
a toolkit constraint cannot, in general, guarantee.

1and improved immeasurably by the addition of LISP-style indentation!
2Although, as we said earlier, this issue is critical to execution speed.
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Figure 4.2: Scenarios where d=1 and d=4 are either unsupported or supported

4.3 The CUSTOM-UM-4 constraint

4.3.1 The interplay between d and the v’s

Ensuring that the domain of d is supported w.r.t. the v’s is relatively easy:

• 4 is unsupported if and only if any pair of domains is disjoint.

• 1 is unsupported if and only if v2 and v3 are disjoint (i.e. no equal pair) or else v1

has nothing larger than a value in their intersection.

• 2 and 3 are unsupported symmetrically to 1.

To motivate this, Figure 4.2 shows pairs of scenarios, in each case the upper scenario
shows when a d value would be unsupported but in the lower scenario a subtle difference
in the v’s provides it with support. In 4.2(a), the fact that v2 and v3 do not overlap
rules out 4 ∈ d, but in 4.2(d) each pair overlaps and so 4 is supported. In 4.2(b), 1 ∈ d is
impossible because variables v2 and v3 are disjoint, but in 4.2(e) this has been rectified.
In 4.2(c), variable v1 is not bigger than anything in v2 ∩ v3 so it can’t be the largest of
3, but in 4.2(f) 1 ∈ d is supported.

The above reasoning translates directly into a procedure VToD (Listing 4.2 that
can ensure everything in d is supported w.r.t. the current v’s.

Making sure that the bounds of the v’s are supported w.r.t. d is slightly more chal-
lenging. To motivate this assertion, observe that the whole of the previous chapter
was concerned with propagating from d to v’s in the special case when d = {1, 2, 3, 4},
i.e. when x > y = z, y > x = z, z > x = y and x = y = z are all allowed. Now the
problem is to propagating when d is
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1 if(any pair of v_1 , v_2 or v_3 is disjoint )

2 remove 4 from d

3 else if(v_2 and v_3 are disjoint

4 or else v_1.UB <= min{v_2.UB , v_3 .UB})

5 remove 1 from d

6 else if(v_1 and v_3 are disjoint

7 or else v_2.UB <= min{v_1.UB , v_3 .UB})

8 remove 2 from d

9 else if(v_1 and v_2 are disjoint

10 or else v_3.UB <= min{v_1.UB , v_2 .UB})

11 remove 3 from d

12 end if

Listing 4.2: Pseudocode for procedure VToD checking d support

{1, 2, 3, 4}
or {1, 2, 3} or {1, 2, 4} or {1, 3, 4} or {2, 3, 4}
or {1, 2} or {1, 3} or {1, 4} or {2, 3} or {2, 4} or {3, 4}
or {1} or {2} or {3} or {4}

These are C(4, 4)+C(4, 3)+C(4, 2)+C(4, 1) = 1+4+6+4 = 15 different possibilities3.
Taking experience from Chapter 3 as a guide, where 10s of cases were used to analyse
just one of these, it would seem that analysing all of these cases would be quite time
consuming and potentially error prone. Instead, the approach taken is to consider 1,2,3
and 4 in turn and to imagine for each that it is the sole value in d. Now we can work
out the greatest upper bounds and the least lower bounds that the value can support.
If d happens to be {1, 3, 4} then the upper bounds actually supported is the maximum
out of those found earlier for 1, 3 and 4, and the lower bound supported is the minimum
out of those found earlier. For upper bounds, this is because any greater bound is not
supported by d, and any lesser bound removes a value supported by d. The argument
for lower bounds is symmetric.

An example of this whole process is shown in Figure 4.3. From left to right the top
part shows:

• that d = {1, 3, 4} and the initial bounds of the vs (unshaded);

• the bounds supported by each of 1,2,3 and 4; and finally,

• the actual supported bounds by taking the greatest upper bound and the least
lower bound.

The bottom part shows in gold the ranges supported in the v variables by 1, 3 and
4 individually; and in green the bound supported by all three together. The red ranges
are the bounds that are supported by d = {2}, but these are ignored since 2 /∈ d in this
example.

This reasoning translates directly into a procedure DToV (Listing 4.3) that can
propagate a change in d to the v’s. It runs in O(1) time.

3In fact they comprise the powerset P ({1, 2, 3, 4}) minus φ. See [Ros98] for a definition.
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1
2
3
4

d={1} d={3} d={4} d={1,3,4}

all the v_1 bounds all the v_2 bounds all the v_3 bounds

d={2}

v_1
v_2
v_3d

Figure 4.3: An example of checking support for M variables by case analysis

1 newV1UB = negative infinity //any u.b. is greater than this

2 newV2UB = negative infinity

3 newV3UB = negative infinity

4 newV1LB = infinity //any l.b. is less than this

5 newV2LB = infinity

6 newV3LB = infinity

7 if(d contains 4)

8 expr1 = min{v1.UB , v2.UB , v3.UB} // least upper bound

9 expr2 = max{v1.LB , v2.LB , v3.LB} // greatest lower bound

10 newV1UB = max{newV1UB , expr1}

11 newV2UB = max{newV2UB , expr1}

12 newV3UB = max{newV3Ub , expr1}

13 newV1LB = min{newV1LB , expr2}

14 newV2LB = min{newV2LB , expr2}

15 newV3LB = min{newV3LB , expr2}

16 else if(d contains 1)

17 expr1 = max{v2.LB , v3.LB}

18 newV1LB = min{newV1LB , expr1 + 1}

19 newV2LB = min{newV2LB , expr1}

20 newV3LB = min{newV3LB , expr1}

21 expr2 = min{v2.UB , v3.UB , v1.UB - 1}

22 newV1UB = max{newV1UB , v1.UB}

23 newV2UB = max{newV2UB , expr2}

24 newV3UB = max{newV3UB , expr2}

25 else if(d contains 2)

26 // symmetric with (d contains 1) branch

27 else if(d contains 3)

28 // symmetric with (d contains 1) branch )

29 end if

30 v1.LB = newV1LB

31 v2.LB = newV2LB

32 v3.LB = newV3LB

33 v1.UB = newV1UB

34 v2.UB = newV2UB

35 v3.UB = newV3UB

Listing 4.3: Pseudocode for procedure DToV checking v’s support
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d_2 = {1,4}

d_1 loses 2

d_1 = {4}

v_b 

v_d 
v_c 

d_1 = {2,4}

v_c 
v_b 

d_2 = {4}

v_a 

Figure 4.4: A reduction in search space as a result of AC

4.3.2 Overall constraint design

A first idea that would give correct answers in the species model would be to propagate
exclusively from d to v1, v2 and v3. The problem with this is that the whole space of D
variables would have to be searched because no values are ruled out by propagation—a
level of consistency very close to forward checking and consequently with a danger of
thrashing.

A better constraint propagates in both directions: from d to v1, v2 and v3; and
vice-versa. In the species tree model, where constraints overlap, there will be a benefit
to the search process whenever a choice for d leads indirectly to the reduction in the
domain of another d (e.g. the example of Figure 4.4, where the loss of 2 from d1 causes
a reduction in the domain of a different d variable).

Before presenting a constraint that does the complete job we will analyse a few
scenarios requiring propagation in order to reason about when it will be needed:

Scenario 1 - A change in v1, v2 or v3 causes loss of support in v1, v2 or v3

This can certainly happen:

d = {4}

In this diagram and those below the value marked X has been lost, the green shaded
values retain support but the red shaded values have lost support.

Scenario 2 - A change in v1, v2 or v3 causes loss of support in d Example:

d = {  ,4}1

Scenario 3 - A change in d causes loss of support in v1, v2 or v3 Example:

d = {1, 4}

Scenario 4 - A change in d causes loss of support in d This is impossible. The
semantics of the different values of d are such that they are disjoint and the removal of
one possibility cannot lead directly to another being ruled out.

These 4 scenarios show that a change in d can only result in the need to check values
in v1, v2 and v3 for support; but a change in v1, v2 and v3 can result in the need to
check both d and variables themselves. Hence the following Custom-Um-4 propagation
algorithm (Listing 4.4).
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1 do DToV

2 if(propagation event is on domain of v_1 , v_2 or v_3)

3 do VToD

Listing 4.4: Pseudocode for propagation algorithm Custom-Um-4

The level of consistency that this constraint maintains is a hybrid between GAC and
GBAC: in d the individual values must be supported but only the bounds of v1, v2 and
v3 need to be supported.

The argument in this Section amounts to a proof of correctness and GBAC status
for the Custom-Um-4 constraint, although it is rigorous it is presented in a less formal
way than the proof of the previous Chapter.

4.3.3 Constraint implementation

The implementation of Custom-Um-3 is a trivial translation of the above pseudocode
into Java. For completeness, however, it is listed in Listing C.2 of Appendix C.

4.3.4 Generalising this technique

The Custom-Um-4 constraint could be abstracted as having a d variable that says
which clauses in a disjunction are enabled. The technique in this Section solves the
problem by considering each clause separately and propagating the whole constraint by
taking the most inclusive bounds for those that are enabled. The d values are ruled out
by a reverse process.

Other constraints doing a similar job could be implemented the same way. For
example the disjunction/or constraint itself works this way. When posting or introduce
an auxiliary non-search {0, 1} variable d. When the 1st clause is ruled out ensure 0 /∈ d.
When the 2nd clause is ruled out ensure 1 /∈ d. To trim the variables in the disjunction,
take the union of the supported values for the clauses corresponding to values still in d.
If this procedure was used in the JChoco implementation of or then it would improve
propagation. For example, the problem x = {1, 2} with constraint x=1 or x=1 currently
does no propagation, but a new implementation could remove 2 from the domain of x.
If a constraint like this had been used in Toolkit-Um-3 then it might have done full
GBAC propagation, although it would still have been slow and bulky.

4.4 Matrix version

The new species model posts the constraint Um-4 in almost the same way as the old one
posted Um-3. Hence it will benefit in the same way as before from a matrix formulation
(see Section 3.5). Such a constraint has been implemented and is listed in Listing C.3
in Appendix C. Since its design is similar to that of Section 3.5 and because it will not
be used in the later empirical study it is not described in any detail here. There was a
level of challenge in the implementation but it was very much analagous to the earlier
matrix constraint. This constraint also does propagation in O(n) time.



Chapter 5

Empirical study

“Mathematics alone makes us feel the limits of our intelligence. For we can
always suppose in the case of an experiment that it is inexplicable because we
don’t happen to have all the data. In mathematics we have all the data ...
and yet we don’t understand.”— Simone Weil

5.1 Birds empirical study

The previous chapters have presented constraint designs and proved properties about
them such as correctness and consistency level. However, the aim of this project was
to provide an improvement in time and space in the species model, so we will now
turn our attention to establishing if the implementations of the constraints make any
practical difference. This empirical study should also bolster confidence in properties
like correctness and consistency levels that we have previously proved, but not tried!

5 different Um constraints as well as an imperative solution were used in the study.
Table 5.1 lists short names that will be used throughout this Chapter along with refer-
ences to where the constraint was introduced.

Predictions:

1. The number of nodes needed for Custom-Um-3, Matrix-Um-3 and Custom-

Um-41 should be same in all cases, since they maintain the same GBAC consis-
tency level.

2. If any constraint finds a solution they all should, since they are all believed to be
correct.

1The full capabilities of this constraint are not being exploited, since only the v’s are being searched,
but it’s better to do a little testing than none at all!

Short name Reference

Imperative Section 2.5
Toolkit-Um-3 Section 3.3
Custom-Um-3 Section 3.4
Matrix-Um-3 Section 3.5
Lazy-Um-3 Section 3.6
Custom-Um-4 Section 4.3

Table 5.1: Constraints used in study

45
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3. The number of nodes needed for Lazy-Um-3 and Toolkit-Um-3 should be at
least as large as for the others, since they maintain a lower consistency level.

4. The memory usage for the constraints should be (in ascending order): Matrix-

Um-3; tie between Lazy-Um-3 and Custom-Um-3; Custom-Um-4; and finally
Toolkit-Um-3. This is due to the fact that Matrix-Um-3 uses one Java object
in total; Lazy-Um-3 and Custom-Um-3 use C(n, 3) Java objects; Custom-Um-

4 use C(n, 3) but there are C(n, 3) additional d variables in the model; and because
Toolkit-Um-3 is posted C(n, 3) times but uses 23 times the space.

5. If Lazy-Um-3 can ever match the others’ nodes, it should finish faster because it
does very little work at each one.

6. Build time should be roughly proportional to the memory size of a problem.

5.1.1 Results

The experiments were run under the conditions described in Section E.1. The min-
domain variable ordering heuristic was used.

The following table lists the results of the experiment on seabird data taken from
[KP02]. The columns are as follows: “Data” lists the identifiers for the input trees, n is
the number of species in total for all the input trees, “Constraint” is the constraint used,
“Build” is the time taken to load the model, “Solve” is the time taken to find a first
solution or to prove none exist, “Total” is the sum of “Build” and “Solve”, “Nodes” is
the number of nodes in the search tree (see [BZF04]) and “Mem” is the model memory
size in MB. In Section E.2 there are some notes on the sources of these data.

Data n Constraint Soln Build Solve Total Nodes Mem

AB 23 Toolkit-Um-3 T 2056 374 2447 23 26.92
Lazy-Um-3 T 294 19667 19978 7706 0.98
Custom-Um-3 T 293 139 449 23 0.98
Matrix-Um-3 T 183 131 331 23 0.24
Custom-Um-4 T 455 420 893 23 3.84
Imperative T 13

AC 32 Toolkit-Um-3 F 2670 327 3014 0 36.34
Lazy-Um-3 F 320 77 414 0 1.26
Custom-Um-3 F 320 160 497 0 1.26
Matrix-Um-3 F 189 153 359 0 0.34
Custom-Um-4 F 521 350 889 0 5.14
Imperative F 12

AD 47 Toolkit-Um-3 T 8235 946 9199 38 118.51
Lazy-Um-3 T 550 165 733 38 3.81
Custom-Um-3 T 549 261 827 38 3.81
Matrix-Um-3 T 220 248 486 38 0.70
Custom-Um-4 T 1128 982 2128 38 16.45
Imperative T 22

AE 95 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 F 3174 316 3508 0 30.64
Custom-Um-3 F 3171 1558 4748 0 30.64
Matrix-Um-3 F 340 1477 1836 0 2.79
Custom-Um-4 F 8306 5427 13752 0 13.88
Imperative F 37
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AF 31 Toolkit-Um-3 T 2497 379 2893 19 32.99
Lazy-Um-3 T 463 129 609 24 1.16
Custom-Um-3 T 313 158 489 18 1.16
Matrix-Um-3 T 188 137 342 18 0.32
Custom-Um-4 T 501 514 1032 18 4.67
Imperative T 20

AG 46 Toolkit-Um-3 T 7671 871 8560 31 111.07
Lazy-Um-3 T 532 161 711 31 3.61
Custom-Um-3 T 531 268 817 31 3.61
Matrix-Um-3 T 222 252 491 31 0.68
Custom-Um-4 T 1077 993 2088 31 15.45
Imperative T 21

BC 29 Toolkit-Um-3 F 2056 21931 24004 171 26.90
Lazy-Um-3 F 285 285207 285508 265237 0.97
Custom-Um-3 F 286 116 419 0 0.97
Matrix-Um-3 F 171 107 295 0 0.27
Custom-Um-4 F 448 277 743 0 3.82
Imperative F 8

BD 42 Toolkit-Um-3 T 5833 930 6780 33 84.26
Lazy-Um-3 T 441 DNF DNF DNF 2.75
Custom-Um-3 T 438 265 720 33 2.75
Matrix-Um-3 T 201 251 469 33 0.55
Custom-Um-4 T 875 1003 1896 33 11.72
Imperative T 17

BE 94 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 DNF 3117 DNF DNF DNF 29.82
Custom-Um-3 F 3363 23377 26758 0 29.82
Matrix-Um-3 F 335 16340 16693 0 2.71
Custom-Um-4 F 7990 91936 99945 0 134.61
Imperative F 11

BF 30 Toolkit-Um-3 T 2405 343 2765 29 29.83
Lazy-Um-3 T 295 83 395 29 1.05
Custom-Um-3 T 293 114 424 29 1.05
Matrix-Um-3 T 174 99 290 29 0.28
Custom-Um-4 T 466 397 880 29 4.22
Imperative T 8

BG 40 Toolkit-Um-3 T 5098 651 5766 30 72.71
Lazy-Um-3 T 413 136 567 31 2.32
Custom-Um-3 T 413 214 645 30 2.32
Matrix-Um-3 T 203 353 574 30 0.51
Custom-Um-4 T 776 829 1622 30 10.03
Imperative T 13

CD 45 Toolkit-Um-3 T 10056 1134 11208 45 143.91
Lazy-Um-3 T 608 186 812 45 4.51
Custom-Um-3 T 609 294 921 45 4.51
Matrix-Um-3 T 224 276 518 45 0.77
Custom-Um-4 T 1324 1154 2496 45 19.82
Imperative T 14

CE 68 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 T 3071 564 3653 72 29.82
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Custom-Um-3 T 3080 1545 4643 68 29.82
Matrix-Um-3 T 516 1451 1985 68 2.72
Custom-Um-4 T 7929 7760 15707 68 134.61
Imperative T 36

CF 34 Toolkit-Um-3 T 3101 563 3681 30 43.72
Lazy-Um-3 T 328 124 469 32 1.47
Custom-Um-3 T 424 152 593 30 1.47
Matrix-Um-3 T 180 133 331 30 0.36
Custom-Um-4 T 561 522 1101 30 6.14
Imperative T 11

CG 44 Toolkit-Um-3 F 6683 587 7288 0 97.10
Lazy-Um-3 F 641 84 743 0 3.22
Custom-Um-3 F 494 229 740 0 3.22
Matrix-Um-3 F 210 215 442 0 0.61
Custom-Um-4 F 980 697 1695 0 13.56
Imperative F 14

DE 104 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 F 4041 249 4308 0 38.66
Custom-Um-3 F 4051 1960 6029 0 38.66
Matrix-Um-3 F 360 2021 2400 0 3.31
Custom-Um-4 F 10664 7454 18136 0 180.87
Imperative F 34

DF 44 Toolkit-Um-3 T 6613 987 7617 37 97.10
Lazy-Um-3 DNF 484 DNF DNF DNF 3.21
Custom-Um-3 T 628 270 915 37 3.21
Matrix-Um-3 T 203 250 470 37 0.60
Custom-Um-4 T 970 940 1928 37 13.55
Imperative T 17

DG 56 Toolkit-Um-3 F 14090 2280 16388 1 201.42
Lazy-Um-3 DNF 800 DNF DNF DNF 6.30
Custom-Um-3 F 791 674 1482 0 6.30
Matrix-Um-3 F 252 640 910 0 0.99
Custom-Um-4 F 1825 2491 4334 0 27.96
Imperative F 19

EF 94 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 DNF 3070 DNF DNF DNF 29.82
Custom-Um-3 F 3070 13299 16387 0 29.82
Matrix-Um-3 F 331 9546 9896 0 2.71
Custom-Um-4 F 7906 51835 59760 0 134.61
Imperative F 12

EG 97 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 F 3424 249 3690 0 32.31
Custom-Um-3 F 3340 11647 15005 0 32.31
Matrix-Um-3 F 344 8900 9262 0 2.89
Custom-Um-4 F 8763 45744 54526 0 147.49
Imperative F 15

FG 38 Toolkit-Um-3 DNF 4299 DNL DNL DNL 61.41
Lazy-Um-3 DNF 381 DNL DNL DNL 2.04
Custom-Um-3 F 387 233 637 0 2.04
Matrix-Um-3 F 195 212 424 0 0.46
Custom-Um-4 F 705 665 1388 0 8.62
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Imperative F 10

ABDF 72 Toolkit-Um-3 T 27032 5291 32340 63 382.52
Lazy-Um-3 DNF 1320 DNF DNF DNF 11.82
Custom-Um-3 T 1303 762 2083 59 11.82
Matrix-Um-3 T 277 722 1017 59 1.48
Custom-Um-4 T 3238 3462 6718 59 52.69
Imperative T 34

ABDG 78 Toolkit-Um-3 DNF 60847 DNF DNF DNF 553.49
Lazy-Um-3 DNF 1754 DNF DNF DNF 16.44
Custom-Um-3 F 1764 4476 6258 0 16.44
Matrix-Um-3 F 301 3633 3952 0 1.91
Custom-Um-4 F 4806 18482 23303 0 75.81
Imperative F 29

ACDF 72 Toolkit-Um-3 F 31067 1931 33015 0 434.84
Lazy-Um-3 F 1442 164 1624 0 13.41
Custom-Um-3 F 1446 985 2449 0 13.41
Matrix-Um-3 F 286 649 953 0 1.61
Custom-Um-4 F 3616 2103 5734 0 60.02
Imperative F 28

ACDG 81 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 F 2049 270 2336 0 18.13
Custom-Um-3 F 2018 2024 4060 0 18.13
Matrix-Um-3 F 307 1711 2036 0 2.06
Custom-Um-4 F 5142 7523 12683 0 84.86
Imperative 35

ACE 97 Toolkit-Um-3 DNL DNL DNL DNL DNL > 629
Lazy-Um-3 F 3366 351 3735 0 32.32
Custom-Um-3 F 3342 1710 5070 0 32.32
Matrix-Um-3 F 737 1632 2387 0 2.91
Custom-Um-4 F 8965 5970 14953 0 147.51
Imperative F 38

The inputs and output from instance ABDF have been printed in Appendix B. All
the constraints as well as the imperative solution get the same result up to symmetry.

5.1.2 Interpretation of results

These results could be summarised as follows:

• Matrix-Um-3 is extremely successful in reducing memory usage compared to
Toolkit-Um-3, achieving up to a factor of 290 (for ABDG) improvement in
memory usage. This improvement also leads to a large reduction in the overall
time to load problems.

• Custom-Um-3 and Matrix-Um-3 reduce search time compared to Toolkit-

Um-3, always beating it by a factor of 3 or better. Matrix-Um-3 is a little faster
than Custom-Um-3.

• Matrix-Um-3 improves total time by a large factor over Toolkit-Um-3, due to
the added effects of reduced load and solve times.
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• In problems AB, AF, BC, BG, CE, CF, DG and ABDF, Matrix-Um-3, Custom-

Um-3 or Custom-Um-4 were observed to solve instances using fewer nodes than
either Toolkit-Um-3 or Lazy-Um-3. This is consistent with the former main-
taining a higher level of consistency than the latter.

• Custom-Um-3, Matrix-Um-3 and Custom-Um-4 always use the same number
of nodes. This is consistent with them maintaining the same GBAC consistency
level.

• All solutions get the same answer, increasing confidence in their correctness.

• Lazy-Um-3 runs very quickly when it uses the same number of nodes as the
others, but occasionally it takes a very large number of nodes and a long time.

5.1.3 Conclusions

It would be hard to make a case for continuing to use Toolkit-Um-3 rather than
Custom-Um-3 or Matrix-Um-3, since these occupy much less space and are faster.
Matrix-Um-3 in particular represents a huge improvement in both space and time. The
memory usage grows so slowly that any foreseeable species data could now be loaded
into the memory of a typical desktop computer.

The Custom-Um-4 constraint is not specialised for use in the above model, so we
should not write it off due to its poor performance, but rather first try it in an experiment
that exploits its full generality. However this experiment provides evidence that it does
indeed maintain GBAC.

It is slightly less easy to throw out Lazy-Um-3 on account of the fact that it is
very often faster than Custom-Um-3. However when Lazy-Um-3 does badly it does
extremely badly and when it does well it wins by a small constant factor. This is because
it cannot propagate any better than GBAC and hence it cannot win by more than a
constant factor, however it could potentially lose by an exponential factor; this would
make it extremely risky to use Lazy-Um-3 until more is known about the circumstances
when it does badly.

The CP solution does not yet appear to be competitive with the imperative solution
in a simple-minded speed comparison, although the gap has been closed dramatically.
All the flexibility and easy of modelling of the CP model is retained in the new version,
so it still well worth working on. A similar study was carried out in [Pro06] when 6 of
the 21 pairs of birds files could not be loaded, now all pairs can be loaded successfully.

5.1.4 Re-running the experiment

BASH script birdsrun.sh in the empirical directory of the attached CD will repeat
the experiment and store the results at path birds data/runs. The output format of
these run files is:

1 [memory in bytes ] [ build time in ms] [ run time in ms] [ total time ] [ solvable ?]

2 [nodes ] [ backtracks ]

3
4 [actual solution tree]

Listing 5.1: Output format of birds experiment run files
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5.2 Random empirical study

5.2.1 Motivation

The tests on seabird data from the previous Section have shown how the constraints
produced have improved on previous work in terms of reduced nodes, time and memory
usage. These results on specific instances raise a few interesting general questions:

• How does the model scale, on average, as a function of the size of the instance (in
this case, defined to be the number of leaf nodes) in terms of time, nodes, memory
usage, etc.?

• What is the relative performance of the different types of constraint, on the av-
erage. Can any general relationships be found, e.g. does the matrix constraint
always solve a problem in fewer nodes than the primitive constraint?

• Do the constraints differ in their ability to make short work of easy or hard in-
stances?

• How do variable ordering heuristics affect results?

These questions will be addressed in this section.
As was stated in previous chapters, the constraints maintain different levels of con-

sistency and they all propagate in constant time, however this tells us relatively little
in the general case about their behaviour on problems. For example, it may be that
a lower level of consistency done quickly will result in a faster solution overall, if the
decrease in effort at each node dominates the increase in the number of nodes.

These issues showed up in instance BG in the previous Section when it was solved
more quickly by Lazy-Um-3 using more nodes. Nevertheless since specific instances
may exhibit pathological or trivial nature; it is hard to tell if they are representative
without investigating the average case. It might be possible to take the approach of
working out analytically an expression for the asymptotic time, space or nodes averaged
over all instances of a problem. However here the approach taken is to investigate the
average case by averaging behaviour over a set of random instances. This does not
constitute a proof of behaviour, but it can strongly suggest that certain relationships
are present.

The problem that will be generated and solved is that of constructing the unique
(subject to provisos described later) ultrametric matrix that satisfies the triples produced
from a single random tree by the BreakUp algorithm. Random trees with different
numbers of leaves will be generated, and hence different numbers of variables and triples
are needed in the model. This problem is simple but non-trivial and all of the constraints
in this report can be applied to it. It is closely related to the species tree problem—the
difference is that in the species tree problem the triples are sourced from two or more
different trees where there is no guarantee of either a unique solution or any solution at
all.

Due to a symmetry in the model used, if the random input tree does not have
maximum depth for its number of leaves then multiple ultrametric matrices could be
a correct result but these multiple solutions must be trivially related to one another.
To justify this, all the solutions to two example problems with 4 leaves are shown in
Figure 5.1. 5.1(a) is a tree with the unique solution 5.1(c). 5.1(b) is a tree with multiple
solutions 5.1(d). The reason why 5.1(b) has multiple solutions is that it has less than
the maximum permitted depth of 3, so that multiple labels can be assigned to its branch
nodes. Conversely 5.1(a) has a single solution because it has the maximum permitted
depth.
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Figure 5.1: All Um trees with 4 leaves

In the results this issue has been ignored, with only time and nodes to the first
solution being obtained. However instances with different numbers of solutions are
intuitively of a likeness, because they seem (given without proof) minimally solvable, in
the sense that the addition of any more non-trivial triples would make them unsolvable
and the removal of any triples would result in multiple and distinct solutions. It is future
work to gain a better understanding of how solvability changes according to the set of
triples and to investigate phase transition behaviour in the problem[CKT91].

All the following experiments were initially carried out with the min-domain dynamic
variable ordering heuristic. This was misleading because the variables could have been
instantiated in a different order for different constraints, meaning that rival constraints
may not be afforded the opportunity to perform equally well if the heuristic makes bad
decisions on their behalf. As a result, the experiments were repeated with an arbitrary
static variable ordering, but both results are presented.

5.2.2 Procedure

1. Generate at random 50 bifurcating trees for each of 4,8,. . . ,44 leaves.

2. Run model using the triples extracted from each random tree by the BreakUp al-
gorithm for each different constraint type. Record time to solve, time to build
model, nodes to solve and memory used for model.

3. Analyse data.

5.2.2.1 Notes on step 1

A random bifurcating tree with k leaves can be generated recursively. The only tree
with 1 leaf is the tree with 1 node. A tree with k > 1 leaves can have subtrees of size
1 and k − 1, 2 and k − 2 or so on to bkc and dke. Hence to generate a random tree
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1 public class RandomBTree {

2 private static int nextLabel = 0;

3
4 // print a random tree with n leaf nodes , in newick format , use nextLabel to

5 // choose a unique label for the leaf

6 public static void printRandomBTree(int n) {

7 if(n == 1) {

8 System .out.print("species " + nextLabel );

9 nextLabel ++;

10 } else {

11 // take the smaller random number of leaves to go in the left

12 //subtree , the balance go in the right subtree

13 int split = 1 + ( int )((k / 2) * Math.random ());

14 System .out.print("(");

15 printRandomBTree(split);

16 System .out.print(",");

17 printRandomBTree(n - split );

18 System .out.print(")");

19 }

20 }

21
22 public static void main(String [] args) {

23 printRandomBTree(Integer . parseInt (args [0]));

24 System .out .println (";");

25 }

26 }

Listing 5.2: Code to generate random bifurcating tree

pick a random integer f from 1 through to bkc and from this calculate another integer
s = k − f . These are the sizes of the two subtrees and they are generated recursively.

Java code to generate trees in Newick format[Ols90] is shown in Listing 5.2. Newick
format intrinsically orders subtrees, but this code does not take advantage of the facility
because it always puts the smaller subtree first.

5.2.2.2 Notes on step 2

The statistics collected were obtained from the sources described in Section E.2.
It was observed that solution time is quite variable for the same instance run under

apparently identical conditions. This could be due to background and system tasks
being scheduled to run, garbage collection, scheduling variation, caching variation, etc.
To remove outliers each instance was executed 5 times and the result used is the median
of the 5 runs. This variation only applies to time but not nodes or memory.

5.2.2.3 Notes on step 3

Shell scripts were used to process the data and to extract results.

5.2.2.4 Access to data and scripts

The data and scripts are available on the attached CD. The procedure to run the scripts
is in Appendix E.3. Following these instructions would repeat the experiment, but they
take several days to complete because of the repetition involved in filtering outliers.

5.2.2.5 Memory usage

One of the aims of this project was to reduce memory usage to allow larger instances
to be modelled. Figure 5.2 shows how the model memory usage grows with increasing
number of leaves. The new constraints are a significant improvement on the Toolkit-

Um-3 benchmark.
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Figure 5.2: Random study: memory versus size

In the creation of the JChoco model of this type of problem:

1. n(n−1)
2 IntDomainVar objects are created to represent variables and domains;

2. either 1 (for Matrix-Um-3) or n(n−1)(n−2)
6 (all other constraints) Constraint

objects are posted to constrain the matrix to be Um;

3. n− 2 Constraints are posted to describe the triples derived from the input tree
by BreakUp, each of which consists of a constant number of nested Constraints;

4. a constant number of other objects like those implementing variable ordering
heuristics; and

5. any other data that JChoco decides to create in the process of variable and
constraint creation.

The IntDomainVar objects are bounds variables and so their representation should
have constant size, hence the memory occupied by variables should be O(n2). The
Constraint objects each maintain a constant amount of state and so the memory occu-
pied should be O(1) for Matrix-Um-3 and O(n3) for the others. The variable ordering
heuristic should occupy O(n2) space because it requires an array of the O(n2) instanti-
ated variables. The amount of space taken up by JChoco’s internal processes has not
been investigated, but it should only inflate figures by a constant factor. Hence overall
the model should have a space complexity of O(n2) for the matrix constraint and O(n3)
for the others. Consistent with expectations, the memory sizes using Custom-Um-3 and
Lazy-Um-3 are identical.

The plot of the log of memory versus problem size (Figure 5.3) appears to exhibit a
logarithmic behaviour (as a consequence of log(xb) = blog(x)), which is consistent with
the belief that the model memory is increasing polynomially with the problem size. The
hypothesis that the model is O(n2) or O(n3) is very strong, but it’s hard to be certain
without investigating every detail of JChoco’s internal representation.
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Figure 5.3: Random study: log of memory versus size
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Figure 5.4: Random study: average time versus size for static variable order
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Figure 5.5: Random study: log of average time versus size for static variable order

5.2.2.6 Experiments with static ordering

Consider the timing results2 in Figure 5.4. As expected from the experiments on species
trees, Matrix-Um-3 does the best on average, but Custom-Um-3 is competitive.
Toolkit-Um-3 is much slower than them. Lazy-Um-3 performs even slower than
Toolkit-Um-3.

Figure 5.5 gives more feeling for the rate of growth in time. Since the y-axis is loga-
rithmic, and the curves look like they might be logarithmic (they look like the memory
growth curves in Figure 5.2 which definitely should be logarithmic, for the reason de-
scribed in Section 5.2.2.5), it seems fair to conclude that the rate of growth in time is
polynomial. This is because it cannot conceivably be sub-linear for information theoretic
reasons, and since polynomials plotted on a logarithmic scale are logarithmic. This is
not a rigorous proof of time complexity, but it gives some guidance. In contrast, the
average time complexity for Lazy-Um-3 seems larger than polynomial. In Section 5.3
we will see an analytical argument that the time complexity observed is polynomial,
specifically O(n4).

The average time plots in Figures 5.4 and 5.5 are rather misleading because there is
a variation in the time taken to solve different instances, as can be seen in Figure 5.6.
Lazy-Um-3 has a very high average time, but it is competitive with Matrix-Um-3,
Custom-Um-3 and Toolkit-Um-3 in a large number of cases. However when it does
badly, it does very badly and skews the overall average. To give a further impression
of the huge variation in Lazy-Um-3 see Figure 5.7 on a logarithmic scale: a very few
instances take a very long time.

Table 5.3 is the number of random instances out of 50 when constraint x takes
longer to solve than constraint y. For example the entry at the intersection of row 12
and C>M is the number of instances when Custom-Um-3 takes longer than Matrix-

Um-3. Table 5.4 does the same for nodes. These reinforce the evidence of the plots, by
showing that on specific instances

• Matrix-Um-3 does increasingly well as size increases and is rarely beaten for
larger instances;

• Lazy-Um-3 does increasingly badly as size increase; and

2The time statistics in this section only include model solving and not building. Build time is
proportional to memory usage, and this is described in Section 5.2.2.5.
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Figure 5.6: Random study: time versus size for static variable order
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Figure 5.7: Random study: log of time versus size for static variable order

Size M>C C>M M>L L>M M>T T>M C>L L>C C>T T>C L>T T>L
4 6 2 50 0 0 11 50 0 0 13 0 50
8 20 4 50 0 0 50 49 0 0 50 0 50
12 3 39 44 5 0 50 46 3 0 50 0 50
16 0 50 18 30 0 50 28 21 0 50 3 47
20 0 50 11 38 0 50 19 31 0 50 10 40
24 0 50 3 47 0 50 12 37 0 50 10 40
28 0 50 1 49 0 50 6 44 0 50 11 39
32 0 50 0 50 0 50 0 49 0 50 12 38
36 0 50 0 50 0 50 1 49 0 50 16 34
40 0 50 1 49 0 50 1 49 0 50 13 37
44 0 50 0 50 0 50 2 48 0 50 15 34

Table 5.3: Random study: pairwise time comparison with static variable order
(M=Matrix-Um-3, C=Custom-Um-3, L=Lazy-Um-3, T=Toolkit-Um-3)
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Size M>C C>M M>L L>M M>T T>M C>L L>C C>T T>C L>T T>L
4 0 0 0 15 0 0 0 15 0 0 15 0
8 0 0 0 50 0 0 0 50 0 0 50 0
12 0 0 0 50 0 0 0 50 0 0 50 0
16 0 0 0 50 0 0 0 50 0 0 50 0
20 0 0 0 50 0 0 0 50 0 0 50 0
24 0 0 0 50 0 0 0 50 0 0 50 0
28 0 0 0 50 0 0 0 50 0 0 50 0
32 0 0 0 50 0 0 0 50 0 0 50 0
36 0 0 0 50 0 0 0 50 0 0 50 0
40 0 0 0 50 0 0 0 50 0 0 50 0
44 0 0 0 50 0 0 0 50 0 0 50 0

Table 5.4: Random study: pairwise nodes comparison with static variable order
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Figure 5.8: Random study: nodes versus size for static variable order

• Custom-Um-3 and Toolkit-Um-3 have similar properties but are slower.

The number of nodes needed (see Figure 5.8) is the same for Custom-Um-3 and
Matrix-Um-3, which is exactly as expected, because they use the same propagation
algorithm implemented in two different ways! More surprisingly, Toolkit-Um-3 always
uses the same number of nodes as these. This is a warning that the random instances
are not suitable for showing up the known behavioural difference (Section 3.7) between
Toolkit-Um-3 and Custom-Um-3. We will discuss in Section 5.2.3 how an improved
trial might address this problem.

Finally, the nodes plot is the same shape as the time plot, because during the search
process time is spent at nodes! A plot of the number of nodes for each individual instance
has been provided on the CD, but it has the same average and spread properties as
Figure 5.6. For a similar reason, a log plot of individual node datums has been left out.

5.2.2.7 Experiments with min-domain dynamic ordering

Figure 5.9 shows that when the min-domain heuristic is applied, the hitherto useless
Lazy-Um-3 constraint is the best on average! Furthermore, the variation (illustrated
by Figure 5.10) that was previous extremely high is now very low. It seems that the
heuristic chooses to instantiate in such a way that Lazy-Um-3 is able to do a lot more
propagation than before. The effect on Custom-Um-3, Matrix-Um-3 and Toolkit-

Um-3 is a small reduction in average time and a reduction in variance.
These results for solve time suggest a difference in the number of nodes needed by

Lazy-Um-3 in the presence of min-domain. In fact, when the min-domain heuristic
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Figure 5.9: Random study: average time versus size for min-domain variable order
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Figure 5.10: Random study: time versus size for min-domain variable order
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Size M>C C>M M>L L>M M>T T>M C>L L>C C>T T>C L>T T>L
4 0 0 50 0 0 23 50 0 0 23 0 50
8 12 4 50 0 0 50 50 0 0 50 0 50
12 2 46 50 0 0 50 50 0 0 50 0 50
16 0 50 50 0 0 50 50 0 0 50 0 50
20 0 50 50 0 0 50 50 0 0 50 0 50
24 0 50 50 0 0 50 50 0 0 50 0 50
28 0 50 50 0 0 50 50 0 0 50 0 50
32 0 50 50 0 0 50 50 0 0 50 0 50
36 0 50 50 0 0 50 50 0 0 50 0 50
40 0 50 50 0 0 50 50 0 0 50 0 50
44 0 50 50 0 0 50 50 0 0 50 0 50

Table 5.5: Random study: pairwise time comparison with min-domain variable order

Size M>C C>M M>L L>M M>T T>M C>L L>C C>T T>C L>T T>L
4 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.6: Random study: pairwise nodes comparison with min-domain variable order

is used the number of nodes used in the search process is exactly the same in every
generated instance! Tables 5.5 and 5.6 confirm that no constraint runs faster than
Lazy-Um-3 on any instance and that every constraint uses exactly the same number of
nodes for all instances.

5.2.3 Conclusion

This random study raises several interesting questions as well as providing useful con-
firmation of some theoretical points.

Model size and speed These results confirm that Custom-Um-3 and Matrix-Um-

3 are an enormous improvement over Toolkit-Um-3.

Effect of heuristics and instance difficulty The min-domain variable ordering
heuristic has been observed making a large difference compared with a static ordering.
Although min-domain was also used for the seabird trials, it did not make Lazy-Um-

3 competitive with the others. Does the fact that these random instances are qualita-
tively “easy” mean that Lazy-Um-3 is able to do well on them? Future work should
involve generating random instances of the supertree problems that span the spectrum
of difficulties, so that we might know under what circumstances good and bad behaviour
occurs.

5.3 Does an AC algorithm solve the whole problem with-

out search?

The results in Sections 5.1 and 5.2 show that using Custom-Um-3 and Matrix-Um-

3 constraints, the species model is never observed to use more than one node per variable.
This suggests that very little, if any, search is needed. Since search begins with an arc
consistent problem, this suggests that in such a consistency level the variables are close
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to being a solution already. Experiments have shown that a valid species tree can be
obtained by taking as final result the lower bound of each variable from an AC problem.
For example:







0 2 1 1
0 1 1

0 1
0







is a solution obtained from the AC problem







0 {2, 3} {1, 2} {1, 2}
0 {1, 2, 3} {1, 2, 3}

0 {1, 2, 3}
0







This result has come too late in the project for a thorough investigation, but we will
now prove informally that the technique should work and provide a revised worst case
time complexity based on it.

The earlier Lemma 6 shows that lower bounds in the ultrametric relation are mutu-
ally supportive, meaning that they together conform to the ultrametric relation. Hence
the lower bounds of the matrix together form an ultrametric matrix. We mustn’t forget,
however, that disjunction breaking constraints are also posted to represent triples and
fans, and that these constraints are less well understood. Proving that lower bounds
support one another in this constraint would involve making sure that an analog of
Lemma 6 applies to it. These facts together would prove that AC is indeed sufficient to
solve the problem.

A corollary of the fact would be that the time complexity of finding a solution has
been reduced to O(n4). The AC-5 algorithm for making a problem AC is described
in Section 1.3.2.2. To make the species tree problem AC, all of the O(n3) constraints
are added to the queue at first; subsequently each constraint may be re-queued up to
O(n3) × 3(n − 1) = O(n4) times, since each of the O(n3) constraints can be requeued
at most 3(n − 1) times if propagation only removes one value at a time. O(1) work is
done each time a constraint is dequeued, because dequeuing and propagation are O(1),
and the O(1) cost of queueing the constraint in the first place can be charged to the
dequeueing code. Hence the overall complexity is (O(n3) + O(n4))O(1) = O(n4), this is
a significant improvement over the O(nn2

) time bound from Section 2.5.4.

Though it seems improbable on the face of it
You must master the huge retards and have faith in the slow
Blossoming of haystacks, stairways, walls of convolvulus,
Until the moon can do no more. Exhausted,
You get out of bed. Your project is completed
Though the experiment is a mess.

— John Ashbery



Chapter 6

Conclusion

“Defeat doesnt finish a man—quit does. A man is not finished when he’s
defeated. He’s finished when he quits.”— Richard M. Nixon

This project began with a review of the fields of constraint programming and species
trees. This was undertaken to provide the necessary background knowledge for a descrip-
tion of two constraint programming solutions to the supertree problem. These solutions
suffered from slow performance and large memory requirements. Since the memory us-
age of these CP solutions was dominated by the O(n3) space needed for ultrametric
constraints, it was hypothesised that reducing memory requirements for this constraint
would improve matters overall.

To this end, 4 different constraint designs for the ultrametric constraint were pro-
duced and implemented. The Toolkit-Um-3 constraint was a naive encoding of the
definition of ultrametric, this was the benchmark against which other implementations
were to be tested. The Custom-Um-3 constraint is the centrepiece of the whole project.
It maintains generalised bounds arc consistency and has a very simple definition which
is the result of exhaustive analysis. A rigorous proof of correctness for the constraint
was undertaken and one of the constituent Lemmas leads to a strong hypothesis that
arc consistency is sufficient to solve the supertree problem without search in O(n4) time.
This is about a factor of n slower than the best imperative solution. An experimental
Lazy-Um-3 constraint was produced to see what effect propagation levels have on the
search process. Finally a whole-matrix ultrametric constraint Matrix-Um-3 based on
this design was created and this provides an asymptotic improvement in space usage.

Next, a generalised ultrametric constraint called Um-4 was investigated. It is used
in a constraint model for the supertree problem that incorporates ancestral divergence
dates. A meta-algorithm Custom-Um-4 was used to implement an easily understood
and effective constraint for the problem. The above whole-matrix optimisation was
applied to create the Matrix-Um-4 constraint providing a further improvement in
model memory size.

Finally an empirical study involving both real-life seabird data and random instances
was carried out. This study confirms that the new constraints are highly effective in
achieving the project’s aims.

All in all, this project has been more wide-ranging than was originally envisaged,
because the scope has widened to include investigations into the species model itself as
well as the constraints it incorporates.
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6.1 Future work

The most interesting future direction for research is to find out more about the behaviour
of the whole model. We have a strong hypothesis that search is not needed to solve the
[GPSW03] supertree model, a next step would be to prove this. Even if this was the case,
the CP literature shows (e.g. [Wal93]) that the worst case performance of an algorithm
is not always a good guide for its true performance. It would be interesting to carry
out another random experiment where the hardness of the problem was controllable,
in an attempt to discover when good and bad behaviours occur and to better predict
behaviour. Perhaps this would explain the fact that the weak-propagating Lazy-Um-

3 constraint does very well on occasions. Many combinatorial problems exhibit phase
transition behaviour where hard problems occur on the boundary between easy solvable
and easy unsolvable, this may be the case for the supertree problem.

It would also be interesting to undertake a thorough study of variable and value
ordering heuristics; other levels of consistency; and other AI approaches to the supertree
problem, in the hope of cross-fertilisation.



Appendix A

TOOLKIT-UM-3 propagation

Script prim prop test/cases.sh contains an example CSP exhibiting every class of
starting lower and upper bounds based on Figures 3.2 and 3.3. By supplying “prim” as
an argument to this script each problem is made arc consistent using Toolkit-Um-3.
Any other argument causes Custom-Um-3 to be used.

Inspection of the output reveals that with Toolkit-Um-3 lower bounds are never
trimmed although upper bounds are always trimmed correctly. Hence Toolkit-Um-

3 maintains a consistency level strictly lower than GBAC.
For example, the following Figures A.1 and A.2 show the same problem being made

GBAC by Toolkit-Um-3 and then Custom-Um-3; the lower bounds are ignored by
Toolkit-Um-3.

64
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1 nmoore@evo :/mnt /cdrom /prim_prop_test$$ java -cp ..:. Test 1 3 2 3 3 3 prim

2 Pb[3 vars , 1 cons]

3 Pb[3 vars , 1 cons]

4 ==== VARIABLES ====

5 x:?[1 , 3]

6 y:?[2 , 3]

7 z:3[3 , 3]

8 Pb[3 vars , 1 cons]

9 ==== CONSTRAINTS ====

10 ( (x:? = y:?) and (z:3 >= y:? + 1) and (z:3 >= x:? + 1) ) or ( (x:? = z:3) and (

y:? >= z:3 + 1) and (y:? >= x:? + 1) ) or ( (y:? = z:3) and (x:? >= z:3 + 1)

and (x:? >= y:? + 1) ) or ( (x:? = y:?) and (y:? = z:3) and (x:? = z:3) )

11
12 Pb[3 vars , 1 cons]

13 Pb[3 vars , 1 cons]

14 ==== VARIABLES ====

15 x:?[1 , 3]

16 y:?[2 , 3]

17 z:3[3 , 3]

18 Pb[3 vars , 1 cons]

19 ==== CONSTRAINTS ====

20 ( (x:? = y:?) and (z:3 >= y:? + 1) and (z:3 >= x:? + 1) ) or ( (x:? = z:3) and (

y:? >= z:3 + 1) and (y:? >= x:? + 1) ) or ( (y:? = z:3) and (x:? >= z:3 + 1)

and (x:? >= y:? + 1) ) or ( (x:? = y:?) and (y:? = z:3) and (x:? = z:3) )

Listing A.1: Propagation with Toolkit-Um-3

1 nmoore@evo :/mnt /cdrom /prim_prop_test$$ java -cp ..:. Test 1 3 2 3 3 3 cust

2 Pb[3 vars , 1 cons]

3 Pb[3 vars , 1 cons]

4 ==== VARIABLES ====

5 x:?[1 , 3]

6 y:?[2 , 3]

7 z:3[3 , 3]

8 Pb[3 vars , 1 cons]

9 ==== CONSTRAINTS ====

10 um.threevar .BAC .CustomUm3@ec16a4

11
12 Pb[3 vars , 1 cons]

13 Pb[3 vars , 1 cons]

14 ==== VARIABLES ====

15 x:?[2 , 3]

16 y:?[2 , 3]

17 z:3[3 , 3]

18 Pb[3 vars , 1 cons]

19 ==== CONSTRAINTS ====

20 um.threevar .BAC .CustomUm3@ec16a4

Listing A.2: Propagation with Custom-Um-3
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An instance of the supertree

problem
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Figure B.1: Seabirds input tree A

Figure B.2: Seabirds input tree B
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Figure B.3: Seabirds input tree D

Figure B.4: Seabirds input tree F
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Figure B.5: Supertree ABDF using Custom-Um-3, Matrix-Um-3, Lazy-Um-3,
Toolkit-Um-3 and Custom-Um-4 constraints
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Figure B.6: Supertree ABDF using imperative technique of [NW96]
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Remaining code listings

1 public class MatrixUm3 extends AbstractLargeIntConstraint {

2 // mapping from variable to matrix index where it came from

3 private Map <IntDomainVar , int []> varToIndex ;

4 // matrix to allow access to constraints by pair of indices

5 private IntDomainVar[][] mat;

6 // size of matrix

7 private int n;

8 //var aliases to allow cut and paste code from CustomUm3 .java

9 private IntDomainVar v0;

10 private IntDomainVar v1;

11 private IntDomainVar v2;

12
13 // BEGIN support code copied from CustomUm3 .java

14 private class Triple {

15 IntDomainVar s, m, l;

16 public Triple (IntDomainVar s, IntDomainVar m, IntDomainVar l) {

17 this.s = s; this.m = m; this.l = l;

18 }

19 }

20 // return true if and only if v and w’s domains have null intersection

21 private static boolean nullIntersection( IntDomainVar v, IntDomainVar w) {

22 return v.getInf () > w.getSup () || v.getSup () < w.getInf ();

23 }

24 // return triple of variables ordered by infimum . Uses sorting algorithm for

25 //3 items using at most 3 comparisons , see page 173 of CLR Introduction to

26 // Algorithms .

27 private Triple sortOnInf () {

28 int v0Inf = v0.getInf ();

29 int v1Inf = v1.getInf ();

30 int v2Inf = v2.getInf ();

31 if(v0Inf <= v1Inf)

32 if(v1Inf <= v2Inf)

33 return new Triple (v0 , v1 , v2);

34 else

35 if(v0Inf <= v2Inf )

36 return new Triple (v0 , v2 , v1);

37 else

38 return new Triple (v2 , v0 , v1);

39 else

40 if(v0Inf <= v2Inf)

41 return new Triple (v1 , v0 , v2);

42 else

43 if(v1Inf <= v2Inf )

44 return new Triple (v1 , v2 , v0);

45 else

46 return new Triple (v2 , v1 , v0);

47 }

48 private Triple sortOnSup () {

49 int v0Sup = v0.getSup ();

50 int v1Sup = v1.getSup ();

51 int v2Sup = v2.getSup ();

52 if(v0Sup <= v1Sup)

53 if(v1Sup <= v2Sup)

54 return new Triple (v0 , v1 , v2);
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55 else

56 if(v0Sup <= v2Sup )

57 return new Triple (v0 , v2 , v1);

58 else

59 return new Triple (v2 , v0 , v1);

60 else

61 if(v0Sup <= v2Sup)

62 return new Triple (v1 , v0 , v2);

63 else

64 if(v1Sup <= v2Sup )

65 return new Triple (v1 , v2 , v0);

66 else

67 return new Triple (v2 , v1 , v0);

68 }

69 public void fixBounds () throws ContradictionException {

70 if(debug) {

71 System .out.println ("fixBounds ()");

72 System .out.println ("vars: " + v0.pretty () + " " +

73 v1.pretty () + " " + v2.pretty ());

74 }

75 //FIX UP THE INFS

76 Triple si = sortOnInf ();

77 int sInf = si.s.getInf ();

78 int mInf = si.m.getInf ();

79 int lInf = si.l.getInf ();

80 //first case , each inf is different

81 if(sInf != mInf && mInf != lInf) {

82 if(debug) System .out.println ("case  1: infs all  different :");

83 si.s.setInf (mInf);

84 //4th case , action is identical to first case but temporarily

85 //separated for clarity

86 } else if(mInf == lInf && sInf != mInf) {

87 if(debug) System .out.println ("case  4: smallest  inf  is distinct :");

88 si.s.setInf (mInf);

89 }

90 //FIX UP THE SUPS

91 Triple ss = sortOnSup ();

92 int sSup = ss.s.getSup ();

93 int mSup = ss.m.getSup ();

94 int lSup = ss.l.getSup ();

95 //first case , each sup is different

96 if(sSup != mSup && mSup != lSup) {

97 if(debug) System .out.println ("case  1: sups all  different ");

98 if(nullIntersection(ss.l, ss.s)) {

99 if(debug ) System .out.println ("null intersection of s and  l");

100 ss.m.setSup (sSup);

101 } else if(nullIntersection(ss.m, ss.s)) {

102 if(debug ) System .out.println ("null intersection of m and  l");

103 ss.l.setSup (sSup);

104 }

105 //third case , largest are equal but smallest is different

106 } else if (sSup != mSup && mSup == lSup) {

107 if(debug) System .out.println ("case  3: 2 largest  sups are  equal");

108 if(nullIntersection(ss.m, ss.s)) {

109 if(debug ) System .out.println ("null intersection of s and  m");

110 ss.l.setSup (sSup);

111 } else if(nullIntersection(ss.l, ss.s)) {

112 if(debug ) System .out.println ("null intersection of s and  l");

113 ss.m.setSup (sSup);

114 }

115 }

116 if(debug) {

117 System .out.println ("end  vars : " + v0.pretty () + " " +

118 v1.pretty () + " " + v2.pretty ());

119 System .out.println ("fixBounds () ends");

120 }

121 }

122 //END support code copied from CustomUm3 .java

123
124 public static IntDomainVar[] getUseful (IntDomainVar [][] mat) {

125 int n = mat.length ;

126 int numUseful = n * (n - 1) / 2;

127 IntDomainVar[] vars = new IntDomainVar[numUseful ];
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128 int count = 0;

129 //extract useful variables

130 for (int i = 0; i < n - 1; i++)

131 for (int j = i + 1; j < n; j++)

132 vars[count ++] = mat [i][j];

133 return vars;

134 }

135 public MatrixUm3 ( IntDomainVar[][] mat ) {

136 //the superclass constructor must come first so we must flatten the

137 //matrix inside a function call

138 super(getUseful (mat));

139 n = mat .length ;

140 int numUseful = n * (n - 1) / 2;

141 varToIndex = new HashMap <IntDomainVar , int [] >(3 * numUseful );

142 //add all useful variables to mapping

143 for (int i = 0; i < n - 1; i++)

144 for (int j = i + 1; j < n; j++)

145 varToIndex .put(mat[i][j], new int [] { i, j });

146 this.mat = mat;

147 }

148
149 private void doPropagate (int idx) throws ContradictionException {

150 v0 = getIntVar (idx);

151 int [] index = varToIndex .get(v0);

152 int i = index [0]; int j = index [1];

153 for (int k = 0; k < n; k++) {

154 if(i != k && j != k) {

155 v1 = mat [i][k];

156 v2 = mat [j][k];

157 fixBounds ();

158 }

159 }

160 }

161
162 public void awakeOnInf (int idx) throws ContradictionException {

163 doPropagate (idx);

164 }

165
166 public void awakeOnSup (int idx) throws ContradictionException {

167 doPropagate (idx);

168 }

169
170 public void awake () throws ContradictionException {

171 for (int i = 0; i < getNbVars (); i++)

172 doPropagate (i);

173 }

174
175 public void awakeOnRem (int idx , int x) throws ContradictionException {

176 ;

177 }

178
179 public void awakeOnRemovals(int idx , IntIterator deltaDom )

180 throws ContradictionException {

181 ;

182 }

183
184 public void propagate () throws ContradictionException {

185 ;

186 }

187
188 public void awakeOnInst (int idx ) throws ContradictionException {

189 doPropagate (idx);

190 }

191
192 public boolean isSatisfied () {

193 return true;

194 }

195 }

Listing C.1: Implementation of Matrix-Um-3
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1 public class CustomUm4 extends AbstractLargeIntConstraint {

2 // additional references to variables , to avoid indexing <vars > every time

3 public IntDomainVar v0;

4 public IntDomainVar v1;

5 public IntDomainVar v2;

6 public IntDomainVar d;

7
8 public CustomUm4 ( IntDomainVar v0 , IntDomainVar v1 , IntDomainVar v2,

9 IntDomainVar d) {

10 super(new IntDomainVar[] {v0 , v1 , v2 , d});

11 this.v0 = v0;

12 this.v1 = v1;

13 this.v2 = v2;

14 this.d = d;

15
16
17 private static final int max(int a, int b) { return Math.max(a, b); }

18 private static final int min(int a, int b) { return Math.min(a, b); }

19 private static final int max(int a, int b, int c) {

20 return Math.max(a, Math.max (b, c));

21 }

22 private static final int min(int a, int b, int c) {

23 return Math.min(a, Math.min (b, c));

24 }

25 // return true if and only if v and w’s domains have null intersection

26 private static boolean nullInter (IntDomainVar v, IntDomainVar w) {

27 return v.getInf () > w.getSup () || v.getSup () < w.getInf ();

28 }

29
30 // propagate changes in d to v0 , v1 and v2

31 public void fromDToV () throws ContradictionException {

32 int v0Inf = v0.getInf (); int newV0Inf = Integer . MAX_VALUE ;

33 int v1Inf = v1.getInf (); int newV1Inf = Integer . MAX_VALUE ;

34 int v2Inf = v2.getInf (); int newV2Inf = Integer . MAX_VALUE ;

35 int v0Sup = v0.getSup (); int newV0Sup = Integer . MIN_VALUE ;

36 int v1Sup = v1.getSup (); int newV1Sup = Integer . MIN_VALUE ;

37 int v2Sup = v2.getSup (); int newV2Sup = Integer . MIN_VALUE ;

38 if(d.canBeInstantiatedTo (1) ) {

39 int expr1 = max(v1Inf , v2Inf);

40 newV0Inf = min(newV0Inf , expr1 + 1);

41 newV1Inf = min(newV1Inf , expr1);

42 newV2Inf = min(newV2Inf , expr1);

43 int expr2 = min(v1Sup , v2Sup , v0Sup - 1);

44 newV0Sup = max(newV0Sup , v0Sup);

45 newV1Sup = max(newV1Sup , expr2);

46 newV2Sup = max(newV2Sup , expr2);

47 }

48 if(d.canBeInstantiatedTo (2) ) {

49 int expr1 = max(v0Inf , v2Inf);

50 newV1Inf = min(newV1Inf , expr1 + 1);

51 newV0Inf = min(newV0Inf , expr1);

52 newV2Inf = min(newV2Inf , expr1);

53 int expr2 = min(v0Sup , v2Sup , v1Sup - 1);

54 newV0Sup = max(newV0Sup , expr2);

55 newV1Sup = max(newV1Sup , v1Sup);

56 newV2Sup = max(newV2Sup , expr2);

57 }

58 if(d.canBeInstantiatedTo (3) ) {

59 int expr1 = max(v0Inf , v1Inf);

60 newV2Inf = min(newV2Inf , expr1 + 1);

61 newV0Inf = min(newV0Inf , expr1);

62 newV1Inf = min(newV1Inf , expr1);

63 int expr2 = min(v0Sup , v1Sup , v2Sup - 1);

64 newV0Sup = max(newV0Sup , expr2);

65 newV1Sup = max(newV1Sup , expr2);

66 newV2Sup = max(newV2Sup , v2Sup);

67 }

68 if(d.canBeInstantiatedTo (4) ) {

69 int minSup = min(v0Sup , v1Sup , v2Sup);

70 int maxInf = max(v0Inf , v1Inf , v2Inf);

71 newV0Inf = min(newV0Inf , maxInf );

72 newV1Inf = min(newV1Inf , maxInf );

73 newV2Inf = min(newV2Inf , maxInf );
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74 newV0Sup = max(newV0Sup , minSup );

75 newV1Sup = max(newV1Sup , minSup );

76 newV2Sup = max(newV2Sup , minSup );

77 }

78 if(debug) {

79 System .out.println ("v0.inf <-" + newV0Inf );

80 System .out.println ("v1.inf <-" + newV1Inf );

81 System .out.println ("v2.inf <-" + newV2Inf );

82 System .out.println ("v0.sup <-" + newV0Sup );

83 System .out.println ("v1.sup <-" + newV1Sup );

84 System .out.println ("v2.sup <-" + newV2Sup );

85 }

86 v0.setInf (newV0Inf ); v1.setInf (newV1Inf ); v2.setInf (newV2Inf );

87 v0.setSup (newV0Sup ); v1.setSup (newV1Sup ); v2.setSup (newV2Sup );

88 }

89
90 // propagate changes in v0 , v1 and v2 to d

91 public void fromVToD () throws ContradictionException {

92 if(nullInter (v1 , v2) || v0.getSup () <= max (v1.getInf () , v2.getInf ()))

93 d.remVal (1);

94 if(nullInter (v0 , v2) || v1.getSup () <= max (v0.getInf () , v2.getInf ()))

95 d.remVal (2);

96 if(nullInter (v0 , v1) || v2.getSup () <= max (v0.getInf () , v1.getInf ()))

97 d.remVal (3);

98 if(nullInter (v0 , v1) || nullInter (v0 , v2) || nullInter (v1 , v2))

99 d.remVal (4);

100 }

101
102 public void eventDispatch(int idx) throws ContradictionException {

103 fromDToV ();

104 if(idx != 3)

105 fromVToD ();

106 }

107
108 public void awake () throws ContradictionException {

109 fromVToD ();

110 fromDToV ();

111 }

112
113 public void awakeOnInf (int idx) throws ContradictionException {

114 eventDispatch(idx);

115 }

116
117 public void awakeOnInst (int idx ) throws ContradictionException {

118 eventDispatch(idx);

119 }

120
121 public void awakeOnRem (int idx , int a) throws ContradictionException {

122 eventDispatch(idx);

123 }

124
125 public void awakeOnRemovals(int idx , IntIterator deltaDomain )

126 throws ContradictionException {

127 eventDispatch(idx);

128 }

129
130 public void awakeOnSup (int idx) throws ContradictionException {

131 eventDispatch(idx);

132 }

133
134 public boolean isSatisfied () {

135 return true;

136 }

137 }

Listing C.2: Implementation of Custom-Um-4
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1 public class MatrixUm4 extends AbstractLargeIntConstraint {

2 // record of parameters

3 private IntDomainVar[][] mat;

4 private IntDomainVar[][][] ds;

5 private int n;

6 // aliases for variables to allow easy import from CustomUm4 .java

7 private IntDomainVar v0;

8 private IntDomainVar v1;

9 private IntDomainVar v2;

10 private IntDomainVar d;

11 // quick way to find out if a variable is one of the ds , val !=null means yes

12 private Map <IntDomainVar , Object > isD ;

13 // unique mapping from d to array of 3 vs

14 private Map <IntDomainVar , IntDomainVar[]> dToVs;

15 // mapping from variable to it’s position in the matrix

16 private Map <IntDomainVar , int []> varToIndex ;

17
18 // BEGIN unchanged code import from CustomUm4 .java

19 private static final int max(int a, int b) { return Math.max(a, b); }

20 private static final int min(int a, int b) { return Math.min(a, b); }

21 private static final int max(int a, int b, int c) {

22 return Math.max(a, Math.max (b, c));

23 }

24 private static final int min(int a, int b, int c) {

25 return Math.min(a, Math.min (b, c));

26 }

27 // return true if and only if v and w’s domains have null intersection

28 private static boolean nullInter (IntDomainVar v, IntDomainVar w) {

29 return v.getInf () > w.getSup () || v.getSup () < w.getInf ();

30 }

31 // propagate changes in d to v0 , v1 and v2

32 public void fromDToV () throws ContradictionException {

33 if(debug) {

34 System .out.println ("fromDToV ()");

35 System .out.println (v0.pretty () + "," + v1.pretty () + "," +

36 v2.pretty () + "," + d.pretty ());

37 }

38 int v0Inf = v0.getInf (); int newV0Inf = Integer . MAX_VALUE ;

39 int v1Inf = v1.getInf (); int newV1Inf = Integer . MAX_VALUE ;

40 int v2Inf = v2.getInf (); int newV2Inf = Integer . MAX_VALUE ;

41 int v0Sup = v0.getSup (); int newV0Sup = Integer . MIN_VALUE ;

42 int v1Sup = v1.getSup (); int newV1Sup = Integer . MIN_VALUE ;

43 int v2Sup = v2.getSup (); int newV2Sup = Integer . MIN_VALUE ;

44 if(d.canBeInstantiatedTo (1) ) {

45 int expr1 = max(v1Inf , v2Inf);

46 newV0Inf = min(newV0Inf , expr1 + 1);

47 newV1Inf = min(newV1Inf , expr1);

48 newV2Inf = min(newV2Inf , expr1);

49 int expr2 = min(v1Sup , v2Sup , v0Sup - 1);

50 newV0Sup = max(newV0Sup , v0Sup);

51 newV1Sup = max(newV1Sup , expr2);

52 newV2Sup = max(newV2Sup , expr2);

53 }

54 if(d.canBeInstantiatedTo (2) ) {

55 int expr1 = max(v0Inf , v2Inf);

56 newV1Inf = min(newV1Inf , expr1 + 1);

57 newV0Inf = min(newV0Inf , expr1);

58 newV2Inf = min(newV2Inf , expr1);

59 int expr2 = min(v0Sup , v2Sup , v1Sup - 1);

60 newV0Sup = max(newV0Sup , expr2);

61 newV1Sup = max(newV1Sup , v1Sup);

62 newV2Sup = max(newV2Sup , expr2);

63 }

64 if(d.canBeInstantiatedTo (3) ) {

65 int expr1 = max(v0Inf , v1Inf);

66 newV2Inf = min(newV2Inf , expr1 + 1);

67 newV0Inf = min(newV0Inf , expr1);

68 newV1Inf = min(newV1Inf , expr1);

69 int expr2 = min(v0Sup , v1Sup , v2Sup - 1);

70 newV0Sup = max(newV0Sup , expr2);

71 newV1Sup = max(newV1Sup , expr2);

72 newV2Sup = max(newV2Sup , v2Sup);

73 }
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74 if(d.canBeInstantiatedTo (4) ) {

75 int minSup = min(v0Sup , v1Sup , v2Sup);

76 int maxInf = max(v0Inf , v1Inf , v2Inf);

77 newV0Inf = min(newV0Inf , maxInf );

78 newV1Inf = min(newV1Inf , maxInf );

79 newV2Inf = min(newV2Inf , maxInf );

80 newV0Sup = max(newV0Sup , minSup );

81 newV1Sup = max(newV1Sup , minSup );

82 newV2Sup = max(newV2Sup , minSup );

83 }

84 if(debug) {

85 System .out.println ("v0.inf <-" + newV0Inf );

86 System .out.println ("v1.inf <-" + newV1Inf );

87 System .out.println ("v2.inf <-" + newV2Inf );

88 System .out.println ("v0.sup <-" + newV0Sup );

89 System .out.println ("v1.sup <-" + newV1Sup );

90 System .out.println ("v2.sup <-" + newV2Sup );

91 }

92 v0.setInf (newV0Inf ); v1.setInf (newV1Inf ); v2.setInf (newV2Inf );

93 v0.setSup (newV0Sup ); v1.setSup (newV1Sup ); v2.setSup (newV2Sup );

94 if(debug) System .out.println ("fromDToV () ends");

95 }

96
97 // propagate changes in v0 , v1 and v2 to d

98 public void fromVToD () throws ContradictionException {

99 if(debug) {

100 System .out.println ("fromVToD ()");

101 System .out.println (v0.pretty () + "," + v1.pretty () + "," +

102 v2.pretty () + "," + d.pretty ());

103 }

104 if(nullInter (v1 , v2) || v0.getSup () <= max (v1.getInf () , v2.getInf ())) {

105 if(debug) System .out.println ("d losing  1");

106 d.remVal (1);

107 }

108 if(nullInter (v0 , v2) || v1.getSup () <= max (v0.getInf () , v2.getInf ())) {

109 if(debug) System .out.println ("d losing  2");

110 d.remVal (2);

111 }

112 if(nullInter (v0 , v1) || v2.getSup () <= max (v0.getInf () , v1.getInf ())) {

113 d.remVal (3);

114 if(debug) System .out.println ("d losing  3");

115 }

116 if(nullInter (v0 , v1) || nullInter (v0 , v2) || nullInter (v1 , v2)) {

117 d.remVal (4);

118 if(debug) System .out.println ("d losing  4");

119 }

120 if(debug) System .out.println ("fromVToD () ends");

121 }

122 //END unchanged code import from CustomUm4 .java

123
124 //get unique variables from the matrix and unique d variables

125 public static IntDomainVar[] getUsefulVars( IntDomainVar[][] mat ,

126 IntDomainVar[][][] ds) {

127 int n = mat.length ;

128 int uniqueVs = n * (n - 1) / 2;

129 int uniqueDs = n * (n - 1) * (n - 2) / 6; //C(n ,3)

130 IntDomainVar[] vars = new IntDomainVar[uniqueVs + uniqueDs ];

131 int count = 0;

132 for (int i = 0; i < n - 1; i++)

133 for (int j = i + 1; j < n; j++)

134 vars[count ++] = mat [i][j];

135 for (int i = 0; i < n - 2; i++)

136 for (int j = i + 1; j < n - 1; j++)

137 for (int k = j + 1; k < n; k++)

138 vars[count ++] = ds[i][j][k];

139 return vars;

140 }

141 public MatrixUm4 ( IntDomainVar[][] mat , IntDomainVar [][][] ds) {

142 super(getUsefulVars(mat , ds));

143 n = mat .length ;

144 this.mat = mat;

145 this.ds = ds;

146 int usefulDs = n * (n-1) * (n-2) / 6;
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147 int usefulVs = n * (n-1) / 2;

148 isD = new HashMap <IntDomainVar , Object >(3 * usefulDs );

149 varToIndex = new HashMap <IntDomainVar , int [] >(3 * usefulVs );

150 dToVs = new HashMap <IntDomainVar , IntDomainVar[] >(3 * usefulDs );

151 for (int i = 0; i < n - 1; i++)

152 for (int j = i + 1; j < n; j++)

153 varToIndex .put(mat[i][j], new int [] {i, j});

154 for (int i = 0; i < n - 2; i++) {

155 for (int j = i + 1; j < n - 1; j++) {

156 for (int k = j + 1; k < n; k++) {

157 isD.put(ds[i][j][k], true);

158 dToVs.put(ds[i][j][k],

159 new IntDomainVar[] { mat [i][j],

160 mat [i][k],

161 mat [j][k]});

162 }

163 }

164 }

165 }

166
167 // sort 3 values using fixed sorting procedure of no more than 3 comparisons .

168 private int [] sortThree (int x, int y, int z) {

169 if(x <= y)

170 if(y <= z)

171 return new int [] {x, y, z};

172 else

173 if(x <= z)

174 return new int [] {x, z, y};

175 else

176 return new int [] {z, x, y};

177 else

178 if(x <= z)

179 return new int [] {y, x, z};

180 else

181 if(y <= z)

182 return new int [] {y, z, x};

183 else

184 return new int [] {z, y, x};

185 }

186 public void eventDispatch(int idx) throws ContradictionException {

187 IntDomainVar v = getIntVar (idx );

188 if(isD.get (v) != null) {

189 d = v;

190 IntDomainVar[] vs = dToVs.get (d);

191 v0 = vs[0]; v1 = vs[1]; v2 = vs[2];

192 fromDToV ();

193 } else {

194 int [] ij = varToIndex .get(v);

195 int i = ij[0]; int j = ij[1];

196 for (int k = 0; k < n; k++) {

197 if(k != i && k != j) {

198 //it’s important that the order of v0 ,v1 ,v2 is always the

199 // same whenever they ’re the same variables , because d is

200 // dependent on the order

201 int [] sort = sortThree (i, j, k);

202 v0 = mat[sort [0]][ sort [1]];

203 v1 = mat[sort [0]][ sort [2]];

204 v2 = mat[sort [1]][ sort [2]];

205 d = ds[sort [0]][ sort [1]][ sort [2]];

206 fromDToV ();

207 fromVToD ();

208 }

209 }

210 }

211 }

212
213 public void awake () throws ContradictionException {

214 for (int i = 0; i < n - 2; i++) {

215 for (int j = i + 1; j < n - 1; j++) {

216 for (int k = j + 1; k < n; k++) {

217 d = ds[i][j][k];

218 v0 = mat[i][j];

219 v1 = mat[i][k];
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220 v2 = mat[j][k];

221 fromDToV ();

222 fromVToD ();

223 }

224 }

225 }

226 }

227
228 public void awakeOnInf (int idx) throws ContradictionException {

229 eventDispatch(idx);

230 }

231
232 public void awakeOnInst (int idx ) throws ContradictionException {

233 eventDispatch(idx);

234 }

235
236 public void awakeOnRem (int idx , int a) throws ContradictionException {

237 eventDispatch(idx);

238 }

239
240 public void awakeOnRemovals(int idx , IntIterator deltaDomain )

241 throws ContradictionException {

242 eventDispatch(idx);

243 }

244
245 public void awakeOnSup (int idx) throws ContradictionException {

246 eventDispatch(idx);

247 }

248
249 public boolean isSatisfied () {

250 return true;

251 }

252 }

Listing C.3: Implementation of Matrix-Um-4
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Electronic materials

The CDROM contains code for all the constraints and models used in the project,
as well as sample constraint programs, scripts for running experiments, data used in
experiments, this report, JChoco source and API.

api/* The JChoco 1.1.04 API in HTML format.

birds/* Birds species data in Newick format originating from [KP02].

choco/* The JChoco 1.1.04 library as Java source and compiled classes.

empirical Data, scripts and constraint models used in the empirical study and de-
scribed elsewhere.

empirical/birds/* Seabird data.

empirical/datares dyn Random data and results for min-domain variable order test.

empirical/datares stat Random data and results for static variable order test.

empirical/model JChoco model to do supertree problem

empirical/RandomBTree.java Java code to generate random bifurcating tree.

empirical/trees constr model JChoco model to do supertree problem but out-
putting more data.

empirical/trees conv model Java imperative solution to supertree problem, used
by birdsrun.sh

practice Practice programs written while learning CP.

practice/cp4 ex 1 Crystal maze puzzle solution.

practice/less than constraint Code for < constraint.

practice/pin num PIN puzzle solution.

80
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practice/zebra CP solution to the well known “zebra puzzle”

presentation LATEX beamer presentation.

prim prop test Scripts used to test levels of propgation for Custom-Um-3 and Toolkit-

Um-3.

proposal.txt Project proposal written in September.

report LATEX sources and graphics for this report.

supertreesNew Prosser’s JChoco supertree models.

um Java library containing implementations of the new constraints.

um/fourvar/Test.java Test program for Um-4 constraints.

um/fourvar/buildin Location of Toolkit-Um-4.

um/fourvar/custom Location of Custom-Um-4.

um/matrix/Test*.java Test programs for matrix constraints.

um/matrix/AC3BAC Location of Matrix-Um-3.

um/matrix/AC3BAC4 Location of Matrix-Um-4.

um/threevar/Test.java Test program for Um-3 constraints.

um/threevar/BAC Location of Custom-Um-3.

um/threevar/builtin Location of Toolkit-Um-3.

um/threevar/wait2 Location of Lazy-Um-3.

D.1 Running the code

The code requires a Java virtual machine supporting the language version 1.5 (including
generics). The code in the project is organised as a package called um which must be
in the Java classpath. The JChoco package also needs to be in the classpath. For
example, to run a supertree model do the following:

1 nmoore@evo :/mnt /cdrom /SUPERTREESMODEL$$ java -cp /mnt /cdrom :. Build \

2 /mnt/cdrom/birds/birdsA .tre \

3 /mnt/cdrom/birds/birdsB .tre

Listing D.1: Example invocation of the supertree model in BASH



APPENDIX D. ELECTRONIC MATERIALS 82

D.1.1 Using code in other models

The code is organised as a Java package called um. The layout is shown above under
the directory um. To use the code it must be correctly imported and the classpath for
the Java VM must include the package.
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Experimental data

E.1 Experimental setup

The experiments were run on a Compaq Evo N800v laptop with a 1.8GHz Pentium
IV processor and 768Mb of RAM, running Ubuntu GNU/Linux with kernel version
2.6.15-28. Sun Java build 1.5.0 06-b05 was used to run the programs.

Linux may choose to use virtual memory to store Java objects such as those that
comprise a JChoco model; if this is done then the search process may be considerably
slower. For increasingly large programs, this effect will result in a crossing over point
when results will suddenly slow down as virtual memory begins to be used, resulting in
an illusory change in execution time. To remove this potential source of variability the
tests were run with virtual memory disabled (using the swapoff utility).

E.2 Sources of statistics

The required performance data is obtained from the following sources:

time The difference in Linux’s real time clock before and after the event being timed.

nodes JChoco provides this statistic.

memory usage The difference between the space occupied in Java’s heap before and
after the model is loaded.

The fact that garbage collection in Java is potentially unpredictable means that
the readings of occupied heap space could be misleading. For example if a “before”
reading includes garbage but an “after” reading does not, then the difference is not the
size of the model but the size of the model minus the amount of garbage collected! The
instrumentation code attempts to avoid this problem by forcing JAVA to garbage collect
before each sample is taken, though this is not a perfect solution because JAVA is at
liberty to ignore the request[Mic07].

JAVA’s heap is variable by default, and this can affect readings of occupied space.
For this reason the heap allocated to JAVA was fixed at 629MB1 for all experiments.

E.3 Running the random empirical study

The scripts described in this Section expect a directory called datares with subdirecto-
ries filtered, results, run and trees. These directories should be empty before the

1The memory size argument to the java executable is “600M”, but this means 600 × 1024 × 1024
bytes. Since a MB is really 106 bytes[Var07a] “600M” amounts to 629.15MB.
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scripts are run, because the scripts are not idempotent. The following is a sequence of
steps required to repeat the experiments:

1. Run gentrees.sh to create a set of random trees. First argument is the number
of each size required; the rest of the arguments are the sizes required. They are
stored in datares/trees.

2. Run doruns.sh to run the model on data files. The first argument is the number
of repetitions to do on each instance; the remaining arguments are the sizes of files
to be used. The results are stored in datares/run.

3. Run medianFilter.sh to median filter time statistics for each size and constraint.
First argument is number of repetitions to average over; second argument is num-
ber of instances there are of each size; remaining arguments are the sizes to be
used. Results stored in datares/filtered.

4. Run scripts resGather*.sh to produce data files suitable for plotting. Results go
in datares/results.

5. Execute gnuplot f for each file f whose name ends with “plot”, to produce graphs
of all the data in datares.



Appendix F

Original project proposal

The motivation for the project is the combination of leaf labelled rooted trees sharing
labels, such as those found in a collection of overlapping phylogenetic trees. A con-
straint programming solution has been produced in JChoco by representing species
trees (which are necessarily ultrametric) as the corresponding ultrametric matrix. The
current method of constraining the matrix to be ultrametric uses JChocotoolkit prim-
itives and this puts a limit on the size of problems that can be modelled.

A first indended outcome of this project is to produce a specialised constraint to
ensure that d(x, y) ≤ d(x, z) = d(y, z) or d(x, y) = d(x, z) = d(y, z) where x, y, z are
one each of the 3 constrained integer variables. This satisfies one of the main conditions
on ultrametricity.

A second intended outcome is to address the fact that a cubic number of constraints
are needed to ensure a matrix is ultrametric. This could be tackled by the production
of a single “ultrametric” constraint over a matrix.

These solutions should be tested and possibly proved correct before being incorpo-
rated into existing code for more testing, benchmarking and use.

Further extension work such as explanations of the tree produced and the discovery
of the “core” tree over all solutions is possible.

Before beginning the above work it will be necessary to gain a familiarity with con-
straint programming and the internals of the JChoco toolkit and to gain a reasonable
understanding of the problem domain of phylogenetic trees and tree construction. The
DCS course on Constraint Programming will not commence until second semester so
this course comes too late to help significantly.
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Project log

“If I had been good at making estimates of how long something was going to
take, I never would have started.”— Donald E. Knuth

11th September 2006 Meet with Patrick to discuss project and wrote project pro-
posal based on this. Briefly reviewed literature in the area of evolution, phylogenetic
trees and supertrees.

18th September 2006 Read Barbara Smith’s introduction to CP. Read JChocomanual.
Modelled zebra and pin number puzzles in JChoco. Explored alternative modellings
and, informally, levels of propagation.

25th September 2006 Derived formula to calculate the number of bifurcating trees
up to symmetry. This came in very useful in generating random trees in the empirical
study.

2nd October 2006 Modelled crystal maze puzzle in JChoco. Wrote background
section on evolution and species trees. Read AC-5 paper to formalise understanding of
propagation. Designed a < (less than) constraint and coded it in JChoco.

9th October 2006 Designed GAC Um-3 constraint, but in consultation with Patrick
decided to concentrate on GBAC constraints for the rest of the project.

16th October 2006 Implemented Um-3 toolkit constraint.

23rd October 2006 Designed GBAC Um-3 constraint. Started implementation.

30th October 2006 Presented design of constraint to Patrick and Chris. Outlined
proof of correctness and discussed it. Continued implementation.

6th November 2006 Proved constraint correct. Needed difficult lemma that clipped
inf can lead to clipped sup, but not the converse. Started designing Um-4 based on this.

13th November 2006 Started coding Um-4 constraint.

20th November 2006 Project on hiatus for assessed coursework.

27th November 2006 Project on hiatus for assessed coursework.
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4th December 2006 Completed design, proof of correctness and implementation of
Um-4 constraint.

11th December 2006 Investigated constraint using fact that Um matrices have fewer
than n−1 distinct variables, didn’t finish work because constraint seemed likely to offer
weak propagation.

18th December 2006 Designed and coded Wait-2 and Wait-3 constraints as straw
men.

25th December 2006 Project on hiatus for Christmas and general private study.

1st January 2007 Project on hiatus for New Year and general private study.

8th January 2007 Re-read AC-5 paper. Identified my constraints as being suitable
for AC-3and AC-5 propagators. Carefully designed a matrix AC-3 propagator.

15th January 2007 Implemented Mat-Um-3 and Mat-Um-4 constraints.

22nd January 2007 Ran preliminary experiments on species tree data. Noticed
phase transition behaviour varying in different constraints.

29th January 2007 Identified flaws in experiment to do with lack of knowledge on
error bounds and inconsistent environment.

5th February 2007 Briefly read literature on random empirical studies in constraint
programming, kappa, etc. Decided to concentrate on testing instances of roughly same
difficulty instead of doing full phase transition investigation, due to time constraints.
Worked out idea of using two constraints at once to exploit hypothesised difference in
phase transition behaviour for different constraints. Designed random empirical exper-
iment.

12th February 2007 Wrote shell scripts to execute and produce tables and graphs for
random empirical study. Ran experiment, noticed strange behaviour and wrote report
section summarising results.

19th February 2007 Discussed with Patrick explanation for why variable ordering
heuristics make such a big difference. Planned experiments on real species data.

26th February 2007

5th March 2007 Ran experiments on real life species trees. Analysed results and
wrote report section summarising results.

12th March 2007 Project on hiatus for assessed coursework.

19th March 2007 Report writing.

26th March 2007 Report writing.
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2nd March 2007 Redrafting of report and preparation for presentation.

9th March 2007 Final check over report, presentation and submission.
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[DDD05] Grégoire Dooms, Yves Deville, and Pierre E. Dupont. Cp(graph): Introduc-
ing a graph computation domain in constraint programming. In CP, pages
211–225, 2005.

[DW04] Richard Dawkins and Yan Wong. The Ancestor’s Tale. Weidenfeld and
Nicholson, 2004.

[Fel78] Joseph Felsenstein. The number of evolutionary trees. Systematic Zoology,
27:27–33, 1978.

[GJM06] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable
constraint solver. In ECAI, pages 98–102, 2006.

[GPSW03] Ian P. Gent, Patrick Prosser, Barbara M. Smith, and Wu Wei. Supertree
Construction with Constraint Programming, pages 837–841. Principle and
Practice of Constraint Programming. Springer, 2003.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[HDT92] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-
consistency algorithm and its specializations. Artificial Intelligence, 57(2–
3):291–321, 1992.

[HE80] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency
for constraint satisfaction problems. Artif. Intell., 14(3):263–313, 1980.

[KP02] M. Kennedy and R.D.M. Page. Seabird supertrees: Combining partial esti-
mates of procellariiform phylogeny. The Auk, 69:88–108, 2002.

[Mac75] Alan K. Mackworth. Consistency in networks of relations. Technical report,
Vancouver, BC, Canada, Canada, 1975.

[Mic07] Sun Microsystems. Javadoc for System.gc(). http://java.sun.com/j2se/
1.5.0/docs/api/java/lang/System.html#gc(), February 2007.

90



BIBLIOGRAPHY 91

[NW96] Meei Pyng Ng and Nicholas C. Wormald. Reconstruction of rooted trees
from subtrees. Discrete Appl. Math., 69(1-2):19–31, 1996.

[Ols90] Gary Olsen. Interpretation of the “newick’s 8:45” tree format stan-
dard. http://evolution.genetics.washington.edu/phylip/newick_

doc.html, August 1990.

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9:268–299, 1993.

[Pro06] P. Prosser. Supertree construction with constraint programming: recent
progress and new challenges. In WCB06 - Workshop on Constraint Based
Methods for Bioinformatics, pages 75–82. N/A, 2006.

[PSW00] P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. Proceedings
of CP 2000: the 6th International Conference on Principles and Practice of
Constraint Programming, (lecture Notes in Computer Science), pages 353–
368, 2000.
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AC-3, 8
AC-5, 9
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space complexity of, 54
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tradeoff with time per node, 34, 51

constraint, 2
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correctness of, 25
extension, 2
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constraint satisfaction problem, see CSP
ContradictionException, 11

Cows, see Ground sloths
crystal maze puzzle, 4
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solution to, 3

Custom-Um-4, 40
consistency level of, 44
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proof of correctness for, 44

Custom-Um-3, 26
implementation of, 31
performance of, 45
proof of correctness for, 30
time complexity of, 30

degree, 13
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descendent, 13
disjunction

implementation of, 44
divergence dates, see ancestral divergence

dates
domain, 2
domain wipeout, 31
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dynamic variable ordering heuristics, 10

evolution, 16

fail first heuristic, 10
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forward checking, 7

GBAC, see generalised bounds arc con-
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definition of, 26

generate and test, 7
Ground sloths, see Clark, Lynsey
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< constraint, 11
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phase transition, 52
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solution, 2
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