Propagating equalities and disequalities

Neil Moore, supervised by Ian Gent and Ian Miguel

School of Computer Science, University of St Andrews, Scotland

1 Introduction

This paper describes an idea to improve propagation in a constraint solver.
The most common frameworks for propagation are based on AC5 [5] where
propagators can accept bound changed, assignment and value removal events.
The idea is to extend this to allow constraints to generate and process equality
and disequality events as well, e.g., r — & = y can generate an equality event
whenever r = true, meaning that from now on in any solution = = y. Every
constraint in the minion solver [3] can produce such events and benefit in some
circumstances from receiving them.

In this paper I will give an example where the idea works successfully, describe
the additional propagation that various propagators in minion can achieve, and
describe implementation issues.

2 Example
Consider the following CSP: variables x1,..., %y, 91,-..,Yyn each with domain
{1,...,n} and constraints x; = y1, T, # yn and Vi, x; = y; < Tit1 = Yit1-

Chris Jefferson has proved [6] that with any static variable ordering, it takes
time exponential in n for backtracking search and propagation to prove that no
solution exists. However by propagating equalities and disequalities the following
will occur:

1. z1 = y; will generate event x1 = y;

2. x1 = Y1 < x2 = Yo will receive the event and produce xo = yo

4. Tp_1 = Yn—1 < Tn = Y, will receive x,_1 = y,—1 and produce z,, = y,
5. constraint x,, # vy, will recieve the event x, = y,, and thus fail

As T show in Section 4 this can be implemented in polynomial time and hence
a significant speedup is achievable on this type of instance. I have implemented
this idea and achieved exponential speedups as expected. I hope to be able to
present practical results on this and other more realistic instances during my
doctoral programme talk.

3 The technique

I propose to allow propagators to generate and receive events of the form z =y
and z # y where x and y are variables. Propagators are not able to detect such

events just by inspecting the solver state, because they may be true without being
entailed by the store. For example, in a CSP containing © = y with dom(x) =
dom(y) = {1,2,3} the propagator can remove no values. z = y is true in any
solution but not entailed by the constraint store. Conversely the AC5-style events
can always be detected by propagators inspecting the domain state.

As a first example, I exhibit a rule for constraint abs (defined z = |y|):

Theorem 1. In constraint x = |y|, if © =y then we can infer that y > 0.
Proof. y=z =y = y=|y| = y=>0.

The standard propagator for x = |y| will prune so that « > 0 anyway, and this
fact combined with the event x = y itself subsumes y > 0. However I will shortly
show that the contrapositive of the rule is useful. As it happens, the converse of
the rule is also true:

Theorem 2. In constraint x = |y|, if © # y then we can infer that y < 0.
Proof. |yl =x#y = [yl #y — y <O.

These theorems show that abs can benefit from receiving (dis-)equality events,
allowing it to prune all negative (positive) values from the domain of y. Can it
also produce such events? I now exhibit a simple meta-theorem to show that
any constraint that can use (dis-)equalities can also produce them for other
constraints to use:

Theorem 3. In constraint C, if event allows us to infer condition, then —condition
allows us to infer —event.

Proof. Omitted.

For example, a rule to produce events from Theorem 1 can be obtained:
Corollary 1. In constraint x = |y|, if y < 0 then we can infer that x # y.
Proof. Immediate from Theorems 1 and 3.

In outline, in my new propagation framework a constraint may choose to receive
(dis-)equality events in addition to the normal set of pruning, assignment and
bound events. It can also notify other constraints that it has inferred a (dis-
)Jequality by generating an event. The solver will

— add the event to the store; other constraints can check for (dis-)equalities
(analogous to variable checks like inDomain, getMin, etc.)

— pass on (dis-)equalities to constraints that have registered in interest (anal-
ogous to static and watched triggers on value removals); and

— propagate the (dis-)equality constraint itself (analogously to how producing
the AC5 event x <~ 1 removes 1 from z’s domain).

I have analysed the whole set of constraints in minion, and found that every
single one can benefit from (dis-)equality propagation. These have not been
chosen specially. A selection are tabulated in Table 1 without proof. For example,
Theorems 1 and 2 are reproduced as the first and second lines of the table. I
am unable to give the complementary rules by Theorem 3 for space reasons.
I attempt to only give rules that are not currently captured by the minion
propagation algorithms.

| Constraint | Definition [Condition| Event | Notes |

abs z = |y| T=y y >0 |See Theorem 1. Subsumed
by other propagation.
abs x = |y| T Fy y <0 See Theorem 2
alldifferent none v; # v; | Generate all disequalities.
difference z=|r—y z#0 T FyY
difference z=lr—y z=0 rT=y
diseq TF£y none TF£y
div z=|z/y] z#1 T#y
element vecli] = e 1t =1dx |vecfidz] =
e
eq =y none rT=y
gee Too complex to describe here, see Section 3.1.
ineq r<y+c rT=y c>0
ineq r<y+c r=c y>0
lexleq Too complex to describe here, see Section 3.2.
lexless Similar to lexleq.
max z = max(y, z) y=2z =1y Also z = 2
max x = max(y, z) xFy r=z
max z = max(y, z) T # 2z rT=y
modulo d/e=7rem r d=e r=20
modulo « e=r fail Remainder must be in the
range 0...e—1
modulo « d=r fail Remainder must be less
than dividend
pow ¥ =z T #z y#1
pow ¥ =z rT=z Yy =
Ovy=1
product Ty =2 r=z y=1 Alsoy =z
product Ty =2 T Fz y#£1 Alsoy =z
table See Section 3.3
OMITTED and, or, reify, reifyimply metaconstraints; min; watchvecneq;
minuseq; occurrence; sumleq; sumgeq; weightedsum

Table 1. Propagation rules

3.1 Global cardinality constraint

The global cardinality constraint (GCC) [8] given vector of variables vy, ..., U,
count variables cy,...,c, and constants valy,...,val, ensures that there are c;
occurrences of val; in vy,..., Uy,

Without being specific about the propagation algorithm, additional propa-
gation could be achieved in the following case, for example:

1. Say that dom(vy), dom(vy) and dom(vs) were all 1,2, 3, and 1 doesn’t appear
in any other domains.

2. Furthermore, 1 has to be repeated twice in v1, ..., V.

3. It is easy to tell that either v; or v, has to be 1, by the pigeonhole principle.

4. If we now know that v; = v9 then we can tell straight away that v; = ve =1
and vs # 1.

Dis-equalities can also be exploited:

1. Say that dom(v,) and dom(vs) are both 1,2, and 1 doesn’t appear elsewhere.

2. Furthermore 1 can be repeated either once or twice.

3. If we now know that v; # v then straight away we know that 1 can’t be
repeated twice.

It is comparatively simple to incorporate disequality information into the gcc
algorithm, by using an alternate network flow design instead of the standard one
described by Régin [8]. I haven’t yet found an efficient design that incorporates
equality information. I also haven’t tried to make gcc produce (dis-)equalities
although it must be possible.

3.2 Lexicographical ordering constraint

The lexicographical ordering constraint ensures that 1 ... 2, <jerx Y1 - .- Yr, €.8.,
100 <jep 101 but 101 ﬁlem 100. The standard literature algorithm obtaining
GAC is given in [1]. It works by maintaining two indices « and (. « is the index
such that all more significant indices are assigned to the same value. 3 is the
most significant index such that the tail of the vectors from that position must
violate the constraint. For example, the following table gives the current domains
of the variables in the lexleq constraint.

| i [of 1]2 [3] 4]
dom(x;)(2(1,3,4(2,3,4(1|3,4,5
dom(y:) 2] 1T |1,2,3[0/0,1,2

In this case a = 1 because x(and yg are assigned the same; 8 = 3 because any
assignment now has z3 > y3 and x4 > y4. The propagator maintains these values
«a and (8 as domains are narrowed. If o > (3 the constraint fails. If a« + 1 = 3 the
propagator enforces z, < yo. If a+1 < [then the propagator enforces z, < yq.

It is quite easy to see how to incorporate (dis-)equality information into the
algorithm: If we find out that z, = y, then « can be incremented. Once a+1 = (3
produce the event z, # y,.

3.3 Table constraint

Roughly speaking, the table constraint propagator in minion works by finding
a valid supporting tuple for each variable/value pair. To take account of (dis-
Jequality information the criteria for “validity” is changed. Before, it was that
each variable/value pair in the tuple is in its respective domain. After, tuples
must also conforms to any and all known (dis-)equalities. For example, tuple
(x =1,y =1,z = 2) is disallowed if we know = # y and/or if we know y = z.

Conversely, if all tuples whose components are in their respective domains
are such that a particular pair of components are always equal or unequal then
the corresponding event can be generated.

4 TImplementation

(Dis-)equalities can be handled in a similar way to other propagation events like

v « 1 or v + 3. Note that there are a quadratic number of different (dis-)equality

events possible, the same as (dis-)assignment and bound changed events.
Constraints should have the following facilities available to them:

— Set up static triggers on chosen (dis-)equality events (if the (dis-)equality is
already true, it should trigger immediately after being set up).

— Generate (dis-)equality events for chosen pairs of variables.

— Check if an equality is true, false or unknown.

(Dis-)equalities should be removed after backtrack. If x = y and = # y are both
generated the solver should fail and backtrack. If x = y and y = z are generated,
the solver should ensure x = z is generated.

(Dis-)equalities need only be generated explicitly by propagators and when
they are not obvious from the variable domains. For example, even if x = 1 and
y = 1 event x = y may not result. This property is not essential, and it would
be a good idea to try generating all events. The advantages are as follows:

— Events that are obvious from the variable domains should be picked up in
the normal course of constraint propagation. It is better for (dis-)equality
propagation to be orthogonal to normal propagation so it may be easily
switched off.

— Avoids introducing vast numbers of events for problems with small domains
where equalities are likely, for example in a boolean problem. Also, no matter
the domains, as more variables are assigned more spurious equalities and
disequalities are produced.

The disadvantage is that this will lead to code duplication: a propagator might
like to use disequality as a trigger, so that it will only propagate when it receives
such an event. However using this framework it cannot assume that it will get
the (dis-)equality trigger and hence it must place other triggers.

It would be sensible at some point to evaluate whether generating all possible
(dis-)equalities is advantageous.

Implied events If events x = y and y = z are both produced, then z = z is
implied. The solver should ensure that these implied events are created, because
the variable y may not be known to a propagators with a trigger on =z = z.
Implied disequality events also exist. Standard algorithms using the union-find
data structure can be exploited to solve these problems, see [7].

When to enable Potentially, enabling (dis-)equality propagation could be dam-
aging to propagation speed, if the dynamic characteristics of the problem are
not suitable. By using a similar technique to [9] the solver can detect cases when
(dis-)equality propagation will be unsuccessful. Details are omitted due to space
considerations.

5 Previous work

This idea is so simple that it is inevitable that similar work will exist. The aim of
the work is to be simple and effective; hence I do not seek to compete with more
general ideas. Furthermore, I have tailored the idea to work in a propagation
solver, so it is not coincident with similar ideas in other types of automated
search and reasoning. I would be interested to hear of any other related work.

Hégglund [4] has worked on allowing arbitrary constraints to be put in the
store. This clearly generalises (dis-)equality propagation. My work is on a special
case of this idea chosen to be efficient and more common in practice. Constraint
handling rule (CHR) solvers [2] can easily incorporate (dis-)equalities into their
rules. However CHR rules are not suitable for replacing constraint propagators
for reasons of efficiency. Some satisfiability modulo theories (SMT) solvers use
the theory of equalities with uninterpreted functions [7]. Although (dis-)equality
propagation applies to this theory and is exploited, the theory is limited in its
expressivity compared to what’s available in a CSP solver. Some CSP solvers
are able to unify variables, meaning that once they are detected to be equal
they become the same variable; Eclipse is an example of such a solver. This al-
lows equality propagation to be implemented, but does not include disequalities.
Theorem 3 shows that both are necessary to achieve full propagation.

References

1. Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Prop-
agation algorithms for lexicographic ordering constraints. Artif. Intell., 170(10):803—
834, 2006.

2. Thom Frithwirth. Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming, 37(1-3):95-138, 1998.

3. Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable con-
straint solver. In ECAI pages 98-102, 2006.

4. Bjorn Hagglund. A framework for designing constraint stores. Master’s thesis,
Linkoping University, 2007.

5. Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-

consistency algorithm and its specializations. Artificial Intelligence, 57(2-3):291—

321, 1992.

Chris Jefferson, June 2009. Personal correspondence.

7. R. Nieuwenhuis and A. Oliveras. Decision Procedures for SAT, SAT Modulo
Theories and Beyond. The BarcelogicTools. (Invited Paper). In G. Sutcliffe and
A. Voronkov, editors, 12h International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning, LPAR’05, volume 3835 of Lecture Notes in Com-
puter Science, pages 23—46. Springer, 2005.

8. Jean-Charles Régin. Generalized arc consistency for global cardinality constraint.
In AAAI/TIAAIL Vol. 1, pages 209-215, 1996.

9. Christian Schulte and Peter J. Stuckey. Dynamic analysis of bounds versus domain
propagation. In Maria Garcia de la Banda and Enrico Pontelli, editors, Twenty
Fourth International Conference on Logic Programming, volume 5366 of Lecture
Notes in Computer Science, pages 332-346, Udine, Italy, December 2008. Springer-
Verlag.

o

